В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
superminikotik
superminikotik
09.12.2021 00:55 •  Алгебра

На координатное прямой отмечено число а
Из следующих неравенст выберите верное:
1)а>0 2)а²<0 3)а+1<1 4)(а

Показать ответ
Ответ:
tanyabober
tanyabober
26.03.2020 02:02
Решается методом интервалов. Для начала находим D(f) и нули функции:

D(f): x(2x+1)≠0
x≠0 и 2x+1≠0
x≠0 и x≠-1/2

f(x)=0 
Умножаем все выражение на x(2x+1), для x≠0 и x≠-1/2, получаем:
(x+2)²(x-1)(2x+3)=0
(x+2)²=0 или x-1=0 или 2x+3=0
x=-2 или x=1 или x=-3/2
Наносим все полученный точки на прямую и вычисляем знаки на интервалах.
Вложение.
Рассмотрим при x>1. Берём 100 и получаем + на интервале. Дальше знаки чередуются вплоть до -2, т.к. -2 это корень выражения (x+2)². При возведении числа в чётную степень знак числа не меняется, значит и у нас знак интервала не поменяется.
Там где минус f(x)<0. Итого получаем отрезок
x∈(-3/2;-1/2)U(0;1)
Дано выражение y=f(x), где f(x) = найдите значения переменной, при которых f(x) < 0
0,0(0 оценок)
Ответ:
ждл1
ждл1
19.03.2022 18:50
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота