2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758
Обозначаем прямую х= -2 +t ; y= 4+3t ; z= -3+2t через a . Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] . * * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * * Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0. β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение). A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B). любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.
2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758
Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] .
* * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * *
Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0.
β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение).
A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B).
любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.