Так как трапеция равнобедренная ,то угол ВАД= 60 градусов, а сторона АВ = Сд = 12 : 2= 6 см ( треугольник АСД прямоугольный с углом 30 градусов , катет лежащий напротив угла в 30 градусов равен половине гипотенузы Тоесть 12 : 2 =6 см )
Треугольник АВС равнобедренный , так как угол ВСА = углу САД = 30 градусов накрест лежащие при параллельных ВС и АД , угол ВАС= 30 градусов.. Так как треугольник АВС равнобедренный ,то АВ=ВС= 6см. Площадь равна (6+12 ) :2 *3√3 = 27√ 3 см квадратных
высота этой трапеции 3√3 , находится из треугольника АВН по теореме Пифагора 6² -3² =27
Треугольник АСД прямоугольный , угол САД = 30 градусов , значит угол СДА= 90 - 30 = 60 градусов.
Так как трапеция равнобедренная ,то угол ВАД= 60 градусов, а сторона АВ = Сд = 12 : 2= 6 см ( треугольник АСД прямоугольный с углом 30 градусов , катет лежащий напротив угла в 30 градусов равен половине гипотенузы Тоесть 12 : 2 =6 см )
Треугольник АВС равнобедренный , так как угол ВСА = углу САД = 30 градусов накрест лежащие при параллельных ВС и АД , угол ВАС= 30 градусов.. Так как треугольник АВС равнобедренный ,то АВ=ВС= 6см. Площадь равна (6+12 ) :2 *3√3 = 27√ 3 см квадратных
высота этой трапеции 3√3 , находится из треугольника АВН по теореме Пифагора 6² -3² =27
ответ 27√ 3 см квадратных
Объяснение:
[(x-4)*(x+3)] / x³.
Объяснение:
Упростить:
(x² - 16)/(x³-3х²) * (х²-9)/(х²+4х)=
В числителе первой дроби разность квадратов, развернуть, в знаменателе первой дроби вынести х² за скобки.
В числителе второй дроби разность квадратов, развернуть, в знаменателе второй дроби вынести х за скобки:
=[(x-4)(x+4)]/[x²(x-3)] * [(x-3)(x+3)]/[x(x+4)]=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй, а знаменатель первой дроби умножить на знаменатель второй:
=[(x-4)(x+4)*(x-3)(x+3)] / [x²(x-3)*x(x+4)]=
сокращение (x+4) и (x+4) на (x+4), (x-3) и (x-3) на (x-3):
=[(x-4)*(x+3)] / [x²*x]=
=[(x-4)*(x+3)] / x³.