На множестве NxN (натуральных чисел) задано отношение (a,b)R(c,d)↔(a+b+c+d)/2 (делится на 2). Является ли отношением эквивалентности? (мне осталось доказать транзитивность)
Обозначим за х время первой бригады ; у время второй бригады х+8=у найдем производительность труда каждой бригады. Возьмем за единицу объем работы каждой бригады 1/х это производительность первой бригады 1/(х+8) производительность второй бригады 1/3 производительность труда первой и второй бригад, когда они работают вместе. 1/х +1/(х+8) =1/3 3х+24+3х=х ²+8х х²+2х-24=0 х1+х2=-2 х1*х2=-24 х1=-6 х2=4 х1=-6 со знаком минус ответом не будет тогда х=4 это время ,которое потребуется для выполнения задания первой бригадой. у=4+8=12 у=12 часов время ,которое потребуется для выполнения задания второй бригадой.
Дано :
ΔАВС - равнобедренный (АВ = ВС).
D ∈ AB, Е ∈ ВС.
АЕ ∩ CD = О.
∠ACD = ∠CAE.
Доказать :
AD = CE.
Доказательство :
Рассмотрим ΔАОС.
Если в треугольнике два угла равны, то он - равнобедренный.Следовательно, ΔАОС - равнобедренный. Причём АО = ОС (боковые стороны), так как лежат против равных углов в одном треугольнике.
Рассмотрим ΔАВС.
В равнобедренном треугольнике углы при основании равны.Так как ΔАВС - равнобедренный (по условию), то ∠А = ∠С.
Тогда -
∠А = ∠DAO + ∠CAE
∠C = ∠ECO + ∠ACD
Учитывая равенство ∠ACD = ∠CAE и ∠А = ∠С, получаем, что ∠DAO = ∠ECO.
Рассмотрим ΔDOA и ΔEOC.
∠DOA = ∠EOC как вертикальные
∠DAO = ∠ECO по выше сказанному
АО = ОС по выше сказанному
Тогда ΔDOA = ΔEOC по стороне и двум прилежащим к ней углам (второй признак равенства треугольников).
В равных треугольниках против равных углов лежат равные стороны.Так как ∠DOA = ∠EOC, то по выше сказанному AD = CE.
Что требовалось доказать.
х+8=у
найдем производительность труда каждой бригады.
Возьмем за единицу объем работы каждой бригады
1/х это производительность первой бригады
1/(х+8) производительность второй бригады
1/3 производительность труда первой и второй бригад, когда они работают вместе.
1/х +1/(х+8) =1/3
3х+24+3х=х ²+8х
х²+2х-24=0
х1+х2=-2
х1*х2=-24 х1=-6 х2=4
х1=-6 со знаком минус ответом не будет
тогда х=4 это время ,которое потребуется для выполнения задания первой бригадой. у=4+8=12 у=12 часов время ,которое потребуется для выполнения задания второй бригадой.