На однієї координатної площині побудуйте графіки функцій: у=2х і у= x+2 та дайте відповідь на питання: Чи будуть дані графіки перетинатися? Якщо будуть, то в якій точці?
Так как наше число должно быть нечетным, оканчиваться оно должно на 1, 3 или 5. Пусть оно оканчивается на 1. Пусть четвертую позицию займет цифра 2, тогда третью позицию займет любое из оставшихся чисел с двумя вариантами перестановок на первой и второй позициях числа. Тогда всего чисел, оканчивающихся на 21 будет 6 штук. Но на месте двойки могут стоять 3, 4 или 5. Значит, чисел, оканчивающихся на 1 будет 6 * 4 = 24 штуки. А всего нечетных чисел (оканчивающихся на 1, 3 или 5): 24 * 3 = 72 (штуки).
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
Так как наше число должно быть нечетным, оканчиваться оно должно на 1, 3 или 5. Пусть оно оканчивается на 1. Пусть четвертую позицию займет цифра 2, тогда третью позицию займет любое из оставшихся чисел с двумя вариантами перестановок на первой и второй позициях числа. Тогда всего чисел, оканчивающихся на 21 будет 6 штук. Но на месте двойки могут стоять 3, 4 или 5. Значит, чисел, оканчивающихся на 1 будет 6 * 4 = 24 штуки. А всего нечетных чисел (оканчивающихся на 1, 3 или 5): 24 * 3 = 72 (штуки).
ответ: 72