На оси y взята точка в, из неё проведены касательные к графику функции y=(√3/2)* x^2+(√3/2). известно, что эти касательные образуют между собой угол 60°. найдите координаты точки в. составьте уравнения тех касательных к графику функции y=(√3/6)*(1-x^2), которые пересекаются под углом 120° в точке, лежащей на оси y. объясните
y ' = 6x^2 - 18x - 24 = 6(x^2 - 3x - 4) = 6(x + 1)(x - 4) < 0
x ∈ (-1; 4)
2)
По теореме косинусов
AB = 10
3) Если пар-пед описан около цилиндра, то у него в основании квадрат со стороной, равной диаметру цилиндра a = 2R = 8.
Высота равна высоте цилиндра H = 5.
V = a^2*H = 8*8*5 = 320 куб.см.
4) Область определения логарифма
x^2 - 14x > 0
x(x - 14) > 0
x ∈ (-oo; 0) U (14; +oo)
Основание логарифма 0 < 1/2 < 1, поэтому функция убывает.
x^2 - 14x - 32 <= 0
(x + 2)(x - 16) <= 0
x ∈ [-2; 16]
С учетом области определения
x ∈ [-2; 0) U (14; 16]
5)
1 уравнение возводим в квадрат
Подставляем 2 уравнение в 1 уравнение
y = 3x; подставляем в 1 уравнение
Умножаем все на 3x
3x^2 - 2x - 1 = 0
(x - 1)(3x + 1) = 0
x1 = 1; y1 = 3
x2 = -1/3; y2 = -1
1) 5 подарочных наборов и 5 коробок
как можно разместить?
В первую коробку мы можем положить любой из 5 наборов
во вторую коробку - любой из 4
в третью- любой из 3
в 4ю- любой из 2
и в 5-ю оставшийся набор
всего
2) даны цифры 1,2,3,4,7
нужно составить 4-х значное число- кратное 6
На 6 делятся числа кратные 2 и 3
кратные 2 должны оканчиваться на 2 или 4
кратные трем должны давать в семме цифр числа - число кратное 3
Первый вариант- наше число заканчивается на 2
тогда на оставшиеся 3 места идут 1,3,4,7
но 1+3+4+2 не кратно 3, 1+3+7+2 не кратно 3, 1+4+7+2 не кратно 3 и 3+4+7+2 не кратно 3
Второй вариант- наше число заканчивается на 4
тогда единственная комбинация это число состоящее из цифр 1,3,7, и 4
Количество таких чисел 3*2*1=6
3) Есть 6 маек и 4 наклейки
первую наклейку клеим на любую из 6, вторую на любую из 5, третью- на любую из 4 и последнюю наклейку на любую из 3
тогда всего