На отдельных карточках написаны числа от 1 до 9, каждое 1 раз. Вероника наугад вытаскивает две карточки. Какова вероятность того, что сумма чисел на вытащенных карточках будет равна 15?
Раско́л Ру́сской це́ркви — церковный раскол в Русской православной церкви, начавшийся в 1650-х годах в Москве. Связан с реформой патриарха Никона, направленной на внесение изменений в богослужебные книги московской печати и некоторые обряды в целях их унификации с современными греческими[1][2][3].
Реформа осуществлялась при участии и поддержке царя Алексея Михайловича и некоторых других православных патриархов, была одобрена и подтверждена постановлениями ряда соборов, проходивших в Москве в 1650—1680-х годах. Противники реформы, впоследствии получившие название «старообрядцы», были преданы анафеме[4] на Московском соборе 1656 года (только держащиеся двуперстного крестного знамения) и на Большом Московском соборе 1666—1667 годов[1][2][5]. В результате появились старообрядческие группы, впоследствии разделившиеся на многочисленные согласия[3].
1)На графике у тебя парабола нарисована. Чертишь прямую у = -1 и рассматриваешь ту часть графика, которая оказывается над этой прямой. Вот вся та часть и есть решение. Запиши интервал для х, который соответствует той части графика и это будет ответ. ДА. Так как знак больше иои РАВНО, то концы интервала будут включены. (квадратные скобочки) 2) 3)Два неравенства называются равносильными, если множества их решений совпадают (в том числе, неравенства, не имеющие решений, считаются равносильными) 4)- 5)Если дискриминант меньше нуля, значит график функции не пересекает ось ОХ! ! В данном случае, парабола будет направлена ветками вверх, следовательно в этом неравенство нет решения. Если бы 3x^2 - 8x + 14 > 0, то решением было бы x Є R, а здесь решения нет!! ( Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения) 7)
Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.
Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).
В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.
Раско́л Ру́сской це́ркви — церковный раскол в Русской православной церкви, начавшийся в 1650-х годах в Москве. Связан с реформой патриарха Никона, направленной на внесение изменений в богослужебные книги московской печати и некоторые обряды в целях их унификации с современными греческими[1][2][3].
Реформа осуществлялась при участии и поддержке царя Алексея Михайловича и некоторых других православных патриархов, была одобрена и подтверждена постановлениями ряда соборов, проходивших в Москве в 1650—1680-х годах. Противники реформы, впоследствии получившие название «старообрядцы», были преданы анафеме[4] на Московском соборе 1656 года (только держащиеся двуперстного крестного знамения) и на Большом Московском соборе 1666—1667 годов[1][2][5]. В результате появились старообрядческие группы, впоследствии разделившиеся на многочисленные согласия[3].
Объяснение:
ДА. Так как знак больше иои РАВНО, то концы интервала будут включены. (квадратные скобочки)
2)
3)Два неравенства называются равносильными, если множества их решений совпадают (в том числе, неравенства, не имеющие решений, считаются равносильными)
4)-
5)Если дискриминант меньше нуля, значит график функции не пересекает ось ОХ! ! В данном случае, парабола будет направлена ветками вверх, следовательно в этом неравенство нет решения.
Если бы 3x^2 - 8x + 14 > 0, то решением было бы x Є R, а здесь решения нет!!
( Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения)
7)
Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.
Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).
В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.