В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
shornikauvladi
shornikauvladi
16.01.2020 23:42 •  Алгебра

На параболе у=х^2 найти точку, расстояние от которой до точки а (2; 0; 5) является наименьшим

Показать ответ
Ответ:
17834567
17834567
01.09.2020 06:47
Распишем формулу, с которой можно рассчитать квадрат расстояния от точки (2; 0,5) до точки с координатами (х; х^2). Почему квадрат? Просто чтобы не париться каждый раз писать значок квадратного корня и не усложнять потом нахождение производной - ведь функция х^2 возрастает на положительном участке числовой оси, т.е. если квадрат расстояния будет минимальным, то и само расстояние тоже будет минимальным. Итак, расписываем, чему равен квадрат расстояния:
(x-2)^2+(x^2-0,5)^2=x^2-4x+4+x^4-x^2+0,25= \\ =x^4-4x+4,25
Найдем производную, приравняем ее к нулю и решим получившееся уравнение, тем самым определим критическую точку (или критические точки):
f'(x)=4x^3-4 \\ 4x^3-4 =0 \\ 4(x^3-1)=0 \\ 4(x-1)(x^2+x+1)=0 \\ x=1
Уравнение производной имеет только один корень, т.е. у функции есть лишь одна критическая точка. Исследуем промежутки монотонности:
при х<1    f'(x)<0, функция убывает;
при  х>1   f'(x)>0, функция возрастает;
это означает, что в точке х=1 находится минимум функции.
Итак, мы нашли точку параболы у=х^2, расстояние от которой до заданной точки минимально. Это точка с координатами х=1; у=1.

ответ: (1; 1)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота