На плане изображено домохозяйство, расположенное по адресу: с. Веселое, д.26. Сторона каждой клетки на плане равна 2 м. Участок имеет форму прямоугольника. Въезд и выезд осуществляется через единственные ворота.
При входе на участок справа от ворот находится коровник, а слева – курятник площадью 72 кв.м. Рядом с курятником расположен пруд площадью 24 кв.м.
Жилой дом расположен в глубине территории. Перед домом есть фонтан. Между фонтаном и воротами – деревья. Между жилым домом и коровником построена баня. За домом находится огород (его границы отмечены на плане пунктирной линией, на котором есть теплица, а также ( в самом углу и огорода , и всего домохозяйства) – компостная яма.
Все дорожки внутри участка вымощены плиткой размером 1м × 1м. Между коровником и курятником имеется площадка площадью 84 кв.м , вымощенная той же плиткой.
Тротуарная плитка продается в упаковках по 4 штуки. Сколько упаковок понадобилось купить владельцам домохозяйства, чтобы выложить все дорожки и площадку между коровником и курятником.
Укажите правильный вариант ответа:
29
30
31
21
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
Объяснение:
ответ:Зависимость x1(t) и x2(t) - это линейные функции, следовательно графиком будет являться прямая, значит тебя движутся равномерно. Начальные координаты тел: x01 = 10 м х02 = 4 м Проекции скоростей (в данной задаче они же и модули скоростей) Vx1 = 2 м/с Vx2 = 5 м/с Тела встретились, значит х1=х2 10 + 2t = 4 + 5t 3t = 6 t = 2 с Теперь, чтобы найти координату точки встречи, подставим найденное t в любое уравнение движения. Если в первое: х = 10 + 2t = 10 + 2*2 = 14 м Если во второе: х = 4 + 5t = 4 + 5*2 = 14 м
Объяснение: