На полке стоит 15 различн(-ых, -ые, -ая) книг(-и, -а). Сколькими различными можно выбрать три книги, если первую будет читать отец, вторую — мать, а третью — тётя?
Пусть знаменатель дроби х, числитель (х-7). Дробь (х-7)/х. Если числитель этой дроби уменьшить на 1 , а знаменатель увеличить на 4, то получим дробь ((х-7)-1)/(х+4)=(х-8)/(х+4). По условию дробь уменьшится на 1/6. Уравнение (х-7)/х - (1/6)=(х-8)/(х+4).
Умножаем на 6х(х+4)≠0. 6(х+4)(х-7)-х(х+4)=6х(х-8); х²-26х+168=0 D=(-26)²-4·168=676-672=4. x=(26-2)/2=12 или х=(26+2)/2=14
х-7=12-7=5 или х-7=14-7=7 дробь 5/12 7/14 (5-1)/(12+4)=4/16=1/4- (7-1)/(14+4)=6/18=1/3 новая дробь (5/12)-(1/6)=(5/12)-(2/12)=3/12=1/4 (7/14)-(1/6)=(21/42)- (7/42)=14/42= =1/3
1,8 : х = 0,09 х : 12 = 0,75
х = 1,8 : 0,09 х = 0,75 * 12
х = 20 х = 9
б) 27 : 18 = х : 3,6 Г) 3 : 7 = 10 : х 2
1,5 = х : 3,6 проверьте правильность написания условия
х = 3,6 * 1,5
х = 5,4
задание № 2
а) с числами 4, 9, 12 и 27 можно составить пропорцию 27 : 9 = 12 : 4
б) с числами 5, 7, 15 и 21 можно составить пропорцию 21 :7 = 15 : 5
Дробь (х-7)/х.
Если числитель этой дроби уменьшить на 1 , а знаменатель увеличить на 4, то получим дробь ((х-7)-1)/(х+4)=(х-8)/(х+4).
По условию дробь уменьшится на 1/6.
Уравнение (х-7)/х - (1/6)=(х-8)/(х+4).
Умножаем на 6х(х+4)≠0.
6(х+4)(х-7)-х(х+4)=6х(х-8);
х²-26х+168=0
D=(-26)²-4·168=676-672=4.
x=(26-2)/2=12 или х=(26+2)/2=14
х-7=12-7=5 или х-7=14-7=7
дробь 5/12 7/14
(5-1)/(12+4)=4/16=1/4- (7-1)/(14+4)=6/18=1/3
новая дробь
(5/12)-(1/6)=(5/12)-(2/12)=3/12=1/4 (7/14)-(1/6)=(21/42)- (7/42)=14/42= =1/3
О т в е т. 5/12 или 7/14.