На прямой взяты 13 точек, а на параллельной ей прямой взяты 3 точ(-ки, -ек). Определи, сколько существует различных треугольников, вершинами которых являются эти точки?
1) На первом месте может быть 1 мальчик из шести. На втором - один из оставшихся пяти. 5*6=30. 2) На первое место могут претендовать любые из десяти участников, а на второе место - любые из оставшихся девяти, поэтому всего 3) Выпишем все нечетные цифры:1, 3, 7, 5, 9 - всего 5 цифрПоскольку необходимо составить четырехзначные числа:Р=5⁴=625 четырехзначных чисел, состоящих из нечетных цифр.Из 4-х разных цифр:Р=5*4*3*2=120 четырехзначных чисел Теперь четырехзначные числа, состоящие из четных цифр:0, 2, 4, 6, 8 - всего 5 четных, а значит Р=5⁴=625 четырехзначных чисел, состоящих из четных цифр.Из 4-х разных цифр:Р=5*4*3*2=120 четырехзначных чисел4) Пятизначных чисел всего 90000 (99999 - 9999); на 2 делится каждое второе (т. е. 45000), на 5 - каждое пятое (18000) 5) n(n-1)/2=50*49/2=1225 раз
2x² + 7x - 4 = 0
Это квадратное уравнение решения много, самый частый -- через дискриминант (D).
Квадратное уравнение в общем виде выглядит так:
где a, b, c -- коэффициенты, a ≠ 0
Формула дискриминанта:
Формула корней:
При этом от дискриминанта зависит количество корней в уравнении:
Если D > 0, то уравнение имеет 2 корня
Если D = 0, то уравнение имеет 1 корень
Если D < 0, то уравнение не имеет корней
Теперь решение:
2x² + 7x - 4 = 0
В нём a = 2, b = 7, c = -4. Подставим эти значения в формулу дискриминанта:
D > 0, значит уравнение имеет 2 корня.
Найдём корень из дискриминанта и корни уравнения:
2) На первое место могут претендовать любые из десяти участников, а на второе место - любые из оставшихся девяти, поэтому
всего
3)
Выпишем все нечетные цифры:1, 3, 7, 5, 9 - всего 5 цифрПоскольку необходимо составить четырехзначные числа:Р=5⁴=625 четырехзначных чисел, состоящих из нечетных цифр.Из 4-х разных цифр:Р=5*4*3*2=120 четырехзначных чисел
Теперь четырехзначные числа, состоящие из четных цифр:0, 2, 4, 6, 8 - всего 5 четных, а значит Р=5⁴=625 четырехзначных чисел, состоящих из четных цифр.Из 4-х разных цифр:Р=5*4*3*2=120 четырехзначных чисел4)
Пятизначных чисел всего 90000 (99999 - 9999); на 2 делится каждое второе (т. е. 45000), на 5 - каждое пятое (18000)
5)
n(n-1)/2=50*49/2=1225 раз