На пяти карточках написаны натуральные числа 2; 3; 4; 5; 6. какая вероятность того, что произведение чисел, записанных на двух случайно выбранных картах будет кратно числу 4?
1)sin250=sin(360-90)=-sin90=-1 2)это формула двойного тангенса получается просто нужно найти тангенс 60 это табличное значение корень из 3 3)sin=4/5 cos=-3/5 там по основному тригонометрическому тождеству находишь косинус так как угол 2 четверти то по окружности смотришь косинус угла второй четверти всегда отрицательный поэтому -3/5 ctg a/2 = 1+cos/sin ctg a/2= 1+(-3/5)/4/5=2/5/4/5=1/2 sin(a+b)=sin a*cos b+ cos a sin b sin(a-b)=sin a* cos b- cos a*sin b sin a*cos b+ cos a sin b-sin b+ cos a/sin a* cos b- cos a*sin b+sin b*cos a там все вроде сократится
Решение: Обозначим за х-количество изюма; за у- количество груш; за z- количество чернослива Тогда согласно условию задачи: Составим уравнения: у=х+100 z/3=у х+у+z=1000 Решим данную систему уравнений: приводим к тому, чтобы в третьем уравнении была одна переменная: х-известна; у=х+100 z=3у подтавим в третье уравнение, получим; х+х+100+3у=1000 Подставим вместо у, известное нам: у=х+100 Тогда: х+х+100+3*(х+100)=1000 х+х+100+3х+300=1000 5х=600 х=120г (количество изюма) у=120+100=220г (количество груш) z=3*220=660г (количество чернослива)
Обозначим за х-количество изюма;
за у- количество груш;
за z- количество чернослива
Тогда согласно условию задачи:
Составим уравнения:
у=х+100
z/3=у
х+у+z=1000
Решим данную систему уравнений:
приводим к тому, чтобы в третьем уравнении была одна переменная:
х-известна;
у=х+100
z=3у
подтавим в третье уравнение, получим;
х+х+100+3у=1000
Подставим вместо у, известное нам: у=х+100
Тогда:
х+х+100+3*(х+100)=1000
х+х+100+3х+300=1000
5х=600
х=120г (количество изюма)
у=120+100=220г (количество груш)
z=3*220=660г (количество чернослива)
Проверка: 120+220+660=1000(г)