Касательная прямая есть производная в точке. Пусть точка касания с графиком имеет координаты . График функций симметричен относительно оси . Пересекающая ось в точке . Очевидно что координата точки . Рассмотрим прямоугольный треугольник образованный касательной к графику функций с осями ординат и абсцисс. . Так как график симметричен , то угол образующие касательные , ордината будет являться биссектрисой . Следовательно треугольник будет прямоугольным и равнобедренным. пусть касательная имеет вид , так как Точка касания равна -1 , касательная в этой точке по формуле
1) Для начала найдём радиус описанной окружности, для этого есть формула:a=2Rsin180/n, где a-длина стороны, R-радиус описанной окружности, n-количество сторон, то есть по условию нам сказано, что a=2 корня из 3, n=3 (так как это треугольник - три стороны).Выразим из этой формулы R;2Rsin180/n=a;2R=a/(sin180/n);R=a/(2sin180/n);R=2 корня из 3/(2*sin180/3);R=2 корня из 3/(2*sin60);R=2 корня из 3/(2*корень из 3/2); (в знаменателе 2 и 2 сокращается и получается)R=2 корня из 3/корень из 3; (умножаем числитель и знаменатель на корень из 3, чтобы избавиться от корня в знаменателе, получаем):R=2*3/3=2;Теперь ищем радиус вписанной окружности r:r=Rcos180/n;r=2*cos60;r=2*1/2;r=1.ответ: r=1. 2)если в равнобедренную трапецию вписана окружность то сумма боковых сторон будет равна сумме оснований => 10\2=5 сумма боковых сторон, а раз это равнобедренная трапеция, то боковые стороны равны => 5\2=2,5 длина боковой стороны
Пусть точка касания с графиком имеет координаты .
График функций симметричен относительно оси . Пересекающая ось в точке .
Очевидно что координата точки .
Рассмотрим прямоугольный треугольник образованный касательной к графику функций с осями ординат и абсцисс.
. Так как график симметричен , то угол образующие касательные , ордината будет являться биссектрисой . Следовательно треугольник будет прямоугольным и равнобедренным.
пусть касательная имеет вид
, так как
Точка касания равна -1 , касательная в этой точке по формуле
То есть координата
2)если в равнобедренную трапецию вписана окружность то сумма боковых сторон будет равна сумме оснований => 10\2=5 сумма боковых сторон, а раз это равнобедренная трапеция, то боковые стороны равны => 5\2=2,5 длина боковой стороны