В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
катя4812
катя4812
27.08.2021 09:30 •  Алгебра

На рисунках представлены графики функций: Для каждого графика укажите: а) координаты точек пересечения с осью Ох; б) координаты точек

пересечения с осью Оу; в) координаты точек, имеющих наибольшую ординату; г) координаты

точек, имеющих наименьшую ординату


На рисунках представлены графики функций: Для каждого графика укажите: а) координаты точек пересечен

Показать ответ
Ответ:
Kate905
Kate905
15.04.2023 02:56

Пусть событие A - "выпало 6 очков", а событие B_i - "было произведено i бросков".

Предполагается, что количество бросков определяется случайно, то есть:

P(B_1)=P(B_2)=P(B_3)=P(B_4)=p=\dfrac{1}{4}

В данном случае конкретное числовое значение не столь важно, главное что оно одинаково для всех гипотез.

Для решения задачи понадобится формула Байеса:

P(B_1)\cdot P(A|B_1)=P(A)\cdot P(B_1|A)

Нам нужно найти вероятность того, что был 1 бросок, при условии того, что выпало 6 очков:

P(B_1|A)=\dfrac{P(B_1)\cdot P(A|B_1)}{P(A)}

Распишем полную вероятность:

P(B_1|A)=

=\dfrac{P(B_1)\cdot P(A|B_1)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+P(B_3)P(A|B_3)+P(B_4)P(A|B_4)}=

=\dfrac{p\cdot P(A|B_1)}{p\cdot P(A|B_1)+p\cdot P(A|B_2)+p\cdot P(A|B_3)+p\cdot P(A|B_4)}=

=\dfrac{P(A|B_1)}{P(A|B_1)+P(A|B_2)+P(A|B_3)+P(A|B_4)}

Найдем вероятности выпадения 6 очков при 1, 2, 3, 4 бросках.

При одном броске вероятность выпадения 6 очков, как и любого другого количества очков:

P(A|B_1)=\dfrac{1}{6}

При двух бросках, 6 очков может выпасть в следующих комбинациях:

{1; 5} - 2 вариант

(3; 3) - 1 вариант

{4; 2} - 2 вариант

Благоприятных вариантов - 5. Общее количество вариантов выпадения комбинации на двух кубиках равно 6^2.

P(A|B_2)=\dfrac{5}{6^2}

При трех бросках, 6 очков может выпасть в следующих комбинациях:

{1; 1; 4} - 3 варианта

(1; 2; 3) - 6 вариантов

Благоприятных вариантов - 9.Общее количество вариантов выпадения комбинации на трех кубиках равно 6^3.

P(A|B_3)=\dfrac{9}{6^3}

При четырех бросках, 6 очков может выпасть в следующих комбинациях:

{1; 1; 1; 3} - 4 варианта

(1; 1; 2; 2) - 6 вариантов

Благоприятных вариантов - 10.Общее количество вариантов выпадения комбинации на четырех кубиках равно 6^4.

P(A|B_4)=\dfrac{10}{6^4}

Таким образом, искомая вероятность:

P(B_1|A)=\dfrac{\dfrac{1}{6} }{\dfrac{1}{6}+\dfrac{5}{6^2}+\dfrac{9}{6^3}+\dfrac{10}{6^4}}=\dfrac{6^3}{6^3+5\cdot6^2+9\cdot6+10}=

=\dfrac{216}{216+180+54+10}=\dfrac{216}{460}=\dfrac{54}{115}

ответ: 54/115

0,0(0 оценок)
Ответ:
Отличница2013
Отличница2013
16.05.2021 00:47

Объяснение:

Требуется построить график функции и определите при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.

1.

\displaystyle y=\frac{5x^2-10x-40}{(x^2+2x)(4-x)}

Разложим числитель на множители. В знаменателе вынесем х из первой скобки:

\displaystyle y=\frac{5(x^2-2x-8)}{x(x+2)(4-x)}\\\\x^2-2x-8=0\\\\x_{1,2}=\frac{2^+_-\sqrt{4+32} }{2}=\frac{2^+_-6}{2}\\\\x_1=4;\;\;\;\;\;x=-2\\\\x^2 -2x-8=(x-4)(x+2)

Далее вынесем минус и сократим дробь. Не забываем про область определения функции:

\displaystyle y=-\frac{5(4-x)(x+2)}{x(x+2)(4-x)}=-\frac{5}{x}

Dy: x ≠ 0; x ≠ -2; x ≠ 4;

или х ∈ (-∞;-2) ∪ (-2;0) ∪ (0;+∞)

2. Строим график - гипербола, расположена во 2 и 4 четвертях.

Возьмем точки:

х=1; y=-5;

x=2; y=-2,5;

x=5; y=-1

Вторую ветвь гиперболы строим симметрично начала координат.

Отметим "выколотые" точки.

x ≠ -2; x ≠ 4

3. При каких значениях k прямая y=kx имеет одну общую точку?

Прямая проходит через начало координат.

Эти прямые пройдут через "выколотые" точки.

Подставим их координаты в уравнение прямой и найдем k:

1) (-2; 2,5)

2,5=k*(-2)

k = -1,25 ⇒ y = -1,25x

2) (4; -1,25)

-1,25=k*(4)

k = - 0,3125 ⇒ y = -0,3125x


Постройте график функции y=5x^2-10x-40/(x^2+2x)(4-x) и определите при каких значениях k прямая y=kx
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота