Здесь используются элементы комбинаторики, в частности сочетания с повторениями. всего пять четных цифр 0, 2,4,6,8 возможных комбинаций по формуле = (5+5-1)!/5!*(5-1)!=126 знак ! -означает факториал - последовательное произведение натуральных чисел до n. А вот с буквами сложней если учитывать, что буквы ы, ь,ъ щ не учитываются то букв будет не 33 а меньше. Но я думаю заморачиваться не стоит. возможные сочетания из букв вычисляются по формуле: =(33+2-1)!/2!*(33-1)!=561 тогда всего номеров 561*126=70686
1. х - скорость течения реки. По течению со скоростью (18+х)км/час 80 км за время: 80/(18+х) час Против течения те же 80 км со скоростью (18-х)км/час за время: 80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9; 80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час. (Отрицательную скорость течения х₂ отметаем) 2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4 б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3 3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2
всего пять четных цифр 0, 2,4,6,8
возможных комбинаций по формуле = (5+5-1)!/5!*(5-1)!=126 знак ! -означает факториал - последовательное произведение натуральных чисел до n.
А вот с буквами сложней если учитывать, что буквы ы, ь,ъ щ не учитываются то букв будет не 33 а меньше. Но я думаю заморачиваться не стоит.
возможные сочетания из букв вычисляются по формуле: =(33+2-1)!/2!*(33-1)!=561
тогда всего номеров 561*126=70686
По течению со скоростью (18+х)км/час 80 км за время:
80/(18+х) час
Против течения те же 80 км со скоростью (18-х)км/час за время:
80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9;
80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час.
(Отрицательную скорость течения х₂ отметаем)
2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4
б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3
3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2