На рисунке изображён график функции y = f(x). Найдите : а)область определения функции б)множество значений функции в)координаты точек пересечения графика функции с осями координат г)значение функции в точке -6, -3, 2,0 д)при каком значении аргумента функция принимает значение 2 , 6 , -1 , -2 . е)наибольшее и наименьшее значение функции. ж)все значения x , при которых функция принимает положительные значения з) все значения x , при которых функция принимает отрицательные значения
В наше время неотъемлемым является знание нашего Ведь в какой-то мере, не зная нашего мы бы не знали кто мы. На протяжении веков формировалась культура, обычаи, происходили различные события, которые очень сильно повлияли на настоящее. В разные времена существовали свои летописцы, они записывали происходящие события, для себя, для людей и для потомков. Современному человеку интересны летописные сказания тем, что в них записаны данные, о которых мы бы не могли узнать, например: различные даты, войны, культурные просветители и деятели тех лет.
N-й степенью ненулевого числа называется произведение n множителей, каждый из которых равен заданному числу.
Число, которое умножают, называется основанием степени, число множителей является показателем степени.
Само число считают первым степенью числа и показатель степени не пишут.
Любой степень числа 1 равен единице ((.
Нулевой степень числа, отличного от нуля, равна единице: .
Степень с отрицательным показателем ненулевого числа равна числу, обратному степенью с противоположным показателем этого числа: .
Возведение в степень имеет следующие свойства:
1) Произведение степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным сумме показателей степени множителей: .
Чтобы умножить степени с одинаковой основой, нужно основу оставить без изменений, а показатели степени добавить.
2) Доля степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным разности показателей степени множителей: .
Чтобы разделить степени с одинаковой основой, нужно основу оставить без изменений, а от показателя степени делимого вычесть показатель степени делителя.
3) Степень степени равен степенью с той же основой и показателем степени, равным произведению показателей степени: .
Чтобы поднять степень в степень, нужно основу оставить без изменений, а показатели степени умножить.
4) Степень произведения множителей равен произведению степеней с тем же показателем каждого множителя: .
Чтобы поднять произведение множителей в степени, надо каждый множитель преподнести в эту степень и результаты перемножить.
5) Чтобы поднять дробь в степень, нужно поднести к этому степени и числитель, и знаменатель:.
Стандартным видом числа называется его запись в виде произведения некоторого числа, большего или равного единице, но меньшего от десяти, на степень числа десять
В наше время неотъемлемым является знание нашего Ведь в какой-то мере, не зная нашего мы бы не знали кто мы. На протяжении веков формировалась культура, обычаи, происходили различные события, которые очень сильно повлияли на настоящее. В разные времена существовали свои летописцы, они записывали происходящие события, для себя, для людей и для потомков. Современному человеку интересны летописные сказания тем, что в них записаны данные, о которых мы бы не могли узнать, например: различные даты, войны, культурные просветители и деятели тех лет.
N-й степенью ненулевого числа называется произведение n множителей, каждый из которых равен заданному числу.
Число, которое умножают, называется основанием степени, число множителей является показателем степени.
Само число считают первым степенью числа и показатель степени не пишут.
Любой степень числа 1 равен единице ((.
Нулевой степень числа, отличного от нуля, равна единице: .
Степень с отрицательным показателем ненулевого числа равна числу, обратному степенью с противоположным показателем этого числа: .
Возведение в степень имеет следующие свойства:
1) Произведение степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным сумме показателей степени множителей: .
Чтобы умножить степени с одинаковой основой, нужно основу оставить без изменений, а показатели степени добавить.
2) Доля степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным разности показателей степени множителей: .
Чтобы разделить степени с одинаковой основой, нужно основу оставить без изменений, а от показателя степени делимого вычесть показатель степени делителя.
3) Степень степени равен степенью с той же основой и показателем степени, равным произведению показателей степени: .
Чтобы поднять степень в степень, нужно основу оставить без изменений, а показатели степени умножить.
4) Степень произведения множителей равен произведению степеней с тем же показателем каждого множителя: .
Чтобы поднять произведение множителей в степени, надо каждый множитель преподнести в эту степень и результаты перемножить.
5) Чтобы поднять дробь в степень, нужно поднести к этому степени и числитель, и знаменатель:.
Стандартным видом числа называется его запись в виде произведения некоторого числа, большего или равного единице, но меньшего от десяти, на степень числа десять