На рисунке изображен график функции, заданной уравнением.a) Покажите на координатной плоскости множество решений неравенства: ;б) Какая из точек: А (3; 4) или В (–1; –5), принадлежит множеству решений неравенства из пункта a? (- ∞; 0)
(0; 2)
(2; +∞)
А
Покажите на координатной плоскости множество решений неравенства
Покажите на координатной плоскости множество решений неравенства
Какая из точек: А (3; 4) или В (–1; –5), принадлежит множеству решений неравенства из пункта a
Очевидно, что слагаемые в сумме составляют бесконечно убывающую геометрическую прогрессию с первым членом 0,7 и знаменателем 0,1.
Тогда по формуле нахождения суммы бесконечной убывающей геометрической прогрессии:
3,(18) = 3 + 0,(18) = 3 + 0,18 + 0,0018 + 0,000018 + 0,00000018 + ...
Слагаемые в сумме, начиная со второго слагаемого, составляют бесконечно убывающую геометрическую прогрессию с первым членом 0,18 и знаменателем 0,01.
Тогда по формуле нахождения суммы бесконечной убывающей геометрической прогрессии:
В.3
1) (7+x)²=49+14x+x²
2) (8-x)²=64-16x+x²
3) 25b²+10bc+c²=(5b+c)²
4) 4z²-20z+25=(2z+5)²
5) 49x²-0.25=(7x-0.5)(7x+0.5)
6) (7x-3)(7x+3)=49x²-9
7) 8x³+64=(2x+4)(4x²-8x+16)
8) 27x³-125=(3x-5)(9x²+15x+25)
9) (x+3)³=x³+9x²+27x+27
10) (4-b)³=64-48b²+12b²-b³
B.4
1) (2y+3)²=4y²+12y+9
2) (3a-1)²=9a²-6a+1
3) 16a²+24ab+9b²=(4a+3b)²
4) 36a²-24ab+4b²=(6a+2b)²
5) 81a⁶-25b⁸=(9a³-5b⁴)(9a³+5b⁴)
6) (4b+5a)(5a-4b)=25a²+16b²
7) 27m³+8n³=(3m+2n)(9m²-6mn+4n²)
8) 64m³-p³=(4m-p)(16m²+4mp+p²)
9) (2a+1)³=8a³+12a²+6a+1
10) (2x-3)³=8x³-36x²+54x-27
В.5
1) (5x+4y)²=25x²+40xy+16y²
2) (8a-5b)²=64a²-80ab+25b²
3) 9x²+42xy+49y²=(3x+7y)²
4) 64x²-48xy+9y²=(8x+3y)²
5) 121x²-0.16y⁴=(11x-0.4y²)(11x+0.4y²)
6) (2n-3m)(3m+2n)=4n²-9m²
7) 125x³+216y³=(5x+6y)(25x²-30xy+32y²)
8) 27a³-64b³=(3a-4b)(9a²+12ab+16b²)
9) (4x+2y)³=64x³+96x²y+48xy²+8y³
10) (5a-3b)³=125a³-225a²b+135ab²-27b³