На рисунке изображен график у=f`(х) - производной функции f(х), определенной на интервале (-9;12). В какой точке отрезка [-8;11] функция f(х) принимает наибольшее значение?Объясните !
Площадь-это произведение сторон прямоугольника, периметр-это сумма сторон прямоугольника. В связи с этим и предлагаемыми данными можно составить 2 уравнения, соответствующие площади газона: х*у=56 и его периметру: х+х+у+у=30 Где х - ширина газона, а у - длина газона Мы получили систему из 2х уравнений: х*у=56 х+х+у+у=30
Немного упросим её, приведя подобные слагаемые: х*у=56 2х+2у=30 Выразим из второго уравнения, к примеру, х и подставим полученное выражение в первое уравнение системы: 2х=30-2у Данное уравнение можно разделить на 2, от этого результат не изменится, получим: х=15-у
Подставляем в первое уравнение системы: (15-у)*у=56 Раскрываем скобки: 15у-у²=56 Получаем квадратное уравнение: -у²+15у-56=0 Или: у²-15у+56=0 Решаем его относительно у: Накладываем условие, что у>0 (так же, как и х), потому что длина не может быть отрицательной: Д=(-15²)-4*1*56=225-224=1 у1=(15+1):2=16:2=8 м - длина газона 1 у2=(15-1):2=14:2=7м - длина газона 2
Теперь найдём соответствующую каждой длине газона ширину, вспомнив выраженноую нами переменную х: х=15-у х1=15-8=7 м - ширина газона 1 х2=15-7=8 м - ширина газона 2
27^x - 9^(x+1) - (9^(x+1) + 486)/(3^x - 6) <= 81
27^x - 9*9^x - (9*9^x + 486)/(3^x - 6) <= 81
Замена 3^x = y > 0 при любом х
((y^3 - 9y^2 - 81)(y - 6) - (9y^2 + 486))/(y - 6) <= 0
(y^4 - 9y^3 - 81y - 6y^3 + 54y^2 + 486 - 9y^2 - 486)/(y - 6) <= 0
(y^4 - 15y^3 + 45y^2 - 81y)/(y - 6) <= 0
y(y^3 - 15y^2 + 45y - 81)/(y - 6) <= 0
y > 0 при любом х, на него можно разделить
(y^3 - 15y^2 + 45y - 81)/(y - 6) <= 0
Уравнение в числителе имеет один иррациональный корень
Но школьник такой корень найти не может.
Отсюда вывод - в исходном уравнении еще есть опечатки, которые сразу не видны.
х*у=56
и его периметру:
х+х+у+у=30
Где х - ширина газона, а у - длина газона
Мы получили систему из 2х уравнений:
х*у=56
х+х+у+у=30
Немного упросим её, приведя подобные слагаемые:
х*у=56
2х+2у=30
Выразим из второго уравнения, к примеру, х и подставим полученное выражение в первое уравнение системы:
2х=30-2у
Данное уравнение можно разделить на 2, от этого результат не изменится, получим:
х=15-у
Подставляем в первое уравнение системы:
(15-у)*у=56
Раскрываем скобки:
15у-у²=56
Получаем квадратное уравнение:
-у²+15у-56=0
Или:
у²-15у+56=0
Решаем его относительно у:
Накладываем условие, что у>0 (так же, как и х), потому что длина не может быть отрицательной:
Д=(-15²)-4*1*56=225-224=1
у1=(15+1):2=16:2=8 м - длина газона 1
у2=(15-1):2=14:2=7м - длина газона 2
Теперь найдём соответствующую каждой длине газона ширину, вспомнив выраженноую нами переменную х:
х=15-у
х1=15-8=7 м - ширина газона 1
х2=15-7=8 м - ширина газона 2
В итоге бы получаем ответ: 7 м и 8 м.