На рисунке изображен график y=f'(x)производной функцииf(x),определенной на интервале(-1;16).Найдите промежутки возрастания функции f(x).В ответе укажите длину наибольшего из них.
В 9.00 велосипедист выехал из А в В. В 11.30 он отправился в обратный путь из в в А, отдохнув полчаса (30 мин). То есть на путь из А в В и отдых он затратил 11.30 - 9.00 = 2.30 (два часа 30 минут). Если вычесть время отдыха, то получим время, которое затратил велосипедист на путь из А в В: 2 ч 30 мин - 30 мин = 2 ч.
Пусть х - расстояние от А до В, тогда
х : 2 = 0,5х - скорость велосипедиста в км/ч.
Второй известный отрезок времени 13.00 - 11.30 = 1.30 (1 час 30 мин = 1,5ч) затратил велосипедист на расстояние (х - 8) км на обратном пути из В в А.
Он ехал с прежней скоростью, поэтому х - 8 = 0,5х · 1,5
x^2+3x-40 = (x + 8)(x - 5) = 0
-x^2 - 8x + 20 = -(x - 2)(x + 10) = 0
Особые точки: -10, -8, 2, 5
Получаем такие варианты:
1) При x < -10 будет |x^2+3x-40| = x^2+3x-40; |-x^2-8x+20| = x^2+8x-20
x^2+3x-40+x^2+8x-20 = 5x+20
2x^2+6x-80 = 0
x^2+3x-40 = 0
(x + 8)(x - 5) = 0
x1= -8; x2 = 5 - оба корня больше -10, нам не подходит.
2) При x ∈ [-10; -8) будет |x^2+3x-40| = x^2+3x-40; |-x^2-8x+20| = -x^2-8x+20
x^2+3x-40-x^2-8x+20 = 5x+20
-5x-20 = 5x+20
10x = -40; x = -4 > -8 - не подходит.
3) При x ∈ [-8; 2) будет |x^2+3x-40| = -x^2-3x+40; |-x^2-8x+20| = -x^2-8x+20
-x^2-3x+40-x^2-8x+20 = 5x+20
-2x^2-16x+40 = 0
x^2 + 8x - 20 = (x - 2)(x + 10) = 0
x1 = -10 < -8; x2 = 2 - оба корня нам не подходят.
4) При x ∈ [2; 5) будет |x^2+3x-40| = -x^2-3x+40; |-x^2-8x+20| = x^2+8x-20
-x^2-3x+40+x^2+8x-20 = 5x+20
5x + 20 = 5x + 20
Это верно для любых x ∈ [2; 5)
5) При x >= 5 будет |x^2+3x-40| = x^2+3x-40; |-x^2-8x+20| = x^2+8x-20
x^2+3x-40+x^2+8x-20 = 5x+20
2x^2+6x-80 = 0
x^2+3x-40 = (x+8)(x-5) = 0
x1 = -8 < 5 - не подходит; x2 = 5 - подходит.
ответ: x ∈ [2; 5]
Расстояние между А и В равно 32 км.
Объяснение:
В 9.00 велосипедист выехал из А в В. В 11.30 он отправился в обратный путь из в в А, отдохнув полчаса (30 мин). То есть на путь из А в В и отдых он затратил 11.30 - 9.00 = 2.30 (два часа 30 минут). Если вычесть время отдыха, то получим время, которое затратил велосипедист на путь из А в В: 2 ч 30 мин - 30 мин = 2 ч.
Пусть х - расстояние от А до В, тогда
х : 2 = 0,5х - скорость велосипедиста в км/ч.
Второй известный отрезок времени 13.00 - 11.30 = 1.30 (1 час 30 мин = 1,5ч) затратил велосипедист на расстояние (х - 8) км на обратном пути из В в А.
Он ехал с прежней скоростью, поэтому х - 8 = 0,5х · 1,5
х - 8 = 0,75х
0,25х = 8
х = 32 (км)