Рассматриваются четырёхзначные числа M, среди которых нужно выбрать числа, удовлетворяющие условиям:
1) 6000 < M < 7000;
2) M делится на 9;
3) каждая следующая цифра M меньше предыдущей.
Если представить число M в виде , где хотя-бы один из цифр x или y или z отличен от 0, то 1-условие выполнено. Но, если выполняется 3-условие, то есть если 6>x>y>z, то 1-условие выполняется.
Рассмотрим все числа вида , для которых выполнено 3-условие:
Чтобы для всех x∈[-1;0] неравенство выполнялось, необходимо обеспечить полное вхождение этого отрезка в интервал (-2a; -a-2), то есть:
а) -2a < -1 => a > 0.5
б) 0 < -a-2 => a < -2
Решений для a нет.
2) -2a > -a-2, то есть a < 2
Решением будет x∈(-a-2; -2a).
Чтобы для всех x∈[-1;0] неравенство выполнялось, необходимо обеспечить полное вхождение этого отрезка в интервал (-a-2; -2a), то есть:
а) -a-2 < -1 => a > -1
б) 0 < -2a => a < 0
Получается, что a ∈ (-1; 0)
3) -2a = -a-2, то есть a = 2. Тогда числитель и знаменатель дроби одинаковы, можно разделить их друг на друга и получить 1. Тогда получим неверное неравенство 1 < 0, то есть неравенство не будет иметь вовсе решений.
Таким образом, получается единственный интервал a∈(-1; 0)
6543 и 6210
Объяснение:
Рассматриваются четырёхзначные числа M, среди которых нужно выбрать числа, удовлетворяющие условиям:
1) 6000 < M < 7000;
2) M делится на 9;
3) каждая следующая цифра M меньше предыдущей.
Если представить число M в виде , где хотя-бы один из цифр x или y или z отличен от 0, то 1-условие выполнено. Но, если выполняется 3-условие, то есть если 6>x>y>z, то 1-условие выполняется.
Рассмотрим все числа вида , для которых выполнено 3-условие:
6543, 6542, 6541, 6540, 6532, 6531, 6530, 6521, 6520, 6510;
6432, 6431, 6430, 6421, 6420, 6410;
6321, 6320, 6310;
6210.
Остается проверить 2-условие для этих чисел. Используем признак делимости на 9:
Число А делится на 9 ⇔ Сумма цифр числа А делится на 9.
Нетрудно проверить, что только следующие числа делятся на 9:
6543 (6+5+4+3=18) и 6210 (6+2+1+0=9).
a∈(-1; 0)
Объяснение:
Рассмотрим неравенство .
Рассмотрим 3 случая:
1) -2a < -a-2, то есть a>2
Решением будет x∈(-2a; -a-2).
Чтобы для всех x∈[-1;0] неравенство выполнялось, необходимо обеспечить полное вхождение этого отрезка в интервал (-2a; -a-2), то есть:
а) -2a < -1 => a > 0.5
б) 0 < -a-2 => a < -2
Решений для a нет.
2) -2a > -a-2, то есть a < 2
Решением будет x∈(-a-2; -2a).
Чтобы для всех x∈[-1;0] неравенство выполнялось, необходимо обеспечить полное вхождение этого отрезка в интервал (-a-2; -2a), то есть:
а) -a-2 < -1 => a > -1
б) 0 < -2a => a < 0
Получается, что a ∈ (-1; 0)
3) -2a = -a-2, то есть a = 2. Тогда числитель и знаменатель дроби одинаковы, можно разделить их друг на друга и получить 1. Тогда получим неверное неравенство 1 < 0, то есть неравенство не будет иметь вовсе решений.
Таким образом, получается единственный интервал a∈(-1; 0)