. На рисунку 1.3 ОА OD. Доповніть умову задачі однією вимогою так, щоб можна було стверджувати, що трикутни- ки AOC i BOD рівні: 1) за першою ознакою рівності трикутників; 2) за другою ознакою рівності трикутників.
1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:
у=х+12.
Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:
1) Обозначим через х количество книг на 1 полке, а через у - количество книг на 2 полке.
2) Так как на 2 полках первоначально было 70 книг, то можем составить первое уравнение: х + у = 70
3) Когда с 1 полки забрали 25% книг, то на ней осталось (100 - 25) = 75% книг от первоначального или 0,75х и в тоже время на 14 книг больше чем на второй полке, на основании этого можно составить второе уравнение: 0,75х = у + 14.
4) Таким образом получаем 2 уравнения с двумя неизвестными. Из первого уравнения выражаем у через х, получаем: у = 70 - х и подставляем во второе уравнение:
0,75х = 70 - х + 14
1,75х = 84
х = 48
у = 70 - х = 70 - 48 = 22
ответ: На 1 полке было 48 книг, на второй - 22 книги.
72км
Объяснение:
1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:
у=х+12.
Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:
у=х +1/6 у.
Составляем систему уравнений:
у=х+12
у=х +1/6 у
х+12-х -1/6 у=у-у
12 -1/6 у=0
1/6 у=12
у=12•6=72км - расстояние между пунктами А и В.
1) Обозначим через х количество книг на 1 полке, а через у - количество книг на 2 полке.
2) Так как на 2 полках первоначально было 70 книг, то можем составить первое уравнение: х + у = 70
3) Когда с 1 полки забрали 25% книг, то на ней осталось (100 - 25) = 75% книг от первоначального или 0,75х и в тоже время на 14 книг больше чем на второй полке, на основании этого можно составить второе уравнение: 0,75х = у + 14.
4) Таким образом получаем 2 уравнения с двумя неизвестными. Из первого уравнения выражаем у через х, получаем: у = 70 - х и подставляем во второе уравнение:
0,75х = 70 - х + 14
1,75х = 84
х = 48
у = 70 - х = 70 - 48 = 22
ответ: На 1 полке было 48 книг, на второй - 22 книги.