Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
Раскрыть скобки и привести подобные слагаемые.
а² + 2ab + b² - 2b *a - 2b * b = a² - b²
а² + 2ab + b² - 2ab - 2b² = a² - b²
a² + (2ab - 2ab) + (b² - 2b² ) = a² - b²
a² + (-b²) = a² - b²
a² - b² = a² - b²
Разложить на множители, затем раскрыть скобки.
(а+b)(a+b) - 2b(a+b) = a² - b²
(a+b)(a+b - 2b) = a² - b²
(a+b)(a-b) = a² - b²
a² - b² = a² - b²
При решении использованы формулы сокращенного умножения:
1) квадрат суммы
(а+b)² = a² + 2ab + b²
2) разность квадратов
а² - b² = (a-b)(a+b)
(Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)