На семинар приехали 7 учёных из Норвегии, 7 из России и 6 из Испании. Каждый учёный подготовил один доклад. Порядок докладов определяется случайным образом. Найдите вероятность того, что восьмым окажется доклад учёного из России. Даю остатки (((
Вероятность того, что ученик не даст ни одного неверного ответа, равна произведению вероятностей верного ответа в каждом вопросе. В каждом вопросе два варианта, шанс ответить верно - 50%. 0,5*0,5*0,5*0,5*0,5=(1/2)^5=1/32=0,03125=3,125%. Это шанс того, что ученик не даст ни одного неверного ответа. Нам же нужно найти обратную вероятность - шанс того, что хотя бы один неверный ответ всё же попадется. Очевидно, что это все остальные случаи. 1- (1/32)=31/32, оно же 1-0,03125=0,96875=96,875%. ответ: 31/32, или 96,875%.
0,5*0,5*0,5*0,5*0,5=(1/2)^5=1/32=0,03125=3,125%.
Это шанс того, что ученик не даст ни одного неверного ответа. Нам же нужно найти обратную вероятность - шанс того, что хотя бы один неверный ответ всё же попадется. Очевидно, что это все остальные случаи.
1- (1/32)=31/32, оно же 1-0,03125=0,96875=96,875%.
ответ: 31/32, или 96,875%.
а) 5х2 = 9х + 2; б) -х2 = 5x - 14;
в) 6х + 9 = х2; г) z - 5 = z2 - 25;
д) у2 = 520 - 576; е) 15у2 - 30 = 22y + 7;
ж) 25р2 = 10p - 1; з) 299х2 + 100x = 500 - 101х2. ответ:а) 5х2 = 9х + 2; 5х2 - 9х - 2 = 0; D = 81 + 4 • 5 • 2 = 81 + 40= 121; х = (9±11)/10; х1 = -0,2; х2 = 2;
б) -х2 = 5x - 14; х2 + 5х - 14 = 0; D = 25 + 4 • 14 = 81; х = (-5±9)/2; х1 = -7; х2 = 2;
в) 6х + 9 = х2; х2 - 6х - 9 = 0; D = 36 + 4 • 9 = 36 + 36 = 72; х = (6±√72)/2; = 3 ± 3√2;
г) z - 5 = z2 - 25; z2 - z - 20 = 0; D = 1 + 80 = 81; х = (1±9)/2;; х1 = -4; х2 = 5;
д) у2 = 520 - 576; у2 - 52у + 576 = 0; D1 = 262 - 576 = 676 - 576 = 100; х = (26±10)/1; х1 = 16; х2 = 36;
е) 15у2 - 30 = 22y + 7; 15у2 -22у - 37 = 0; D = 112 + 37 • 15 = 676; х = (11±26)/15; х1 = -1; х2 = 37/15 = 2 7/15;
ж) 25р2 = 10p - 1; 25р2 - 10р + 1; D1 = 25 - 25 = 0; p = 5/25 = 1/5;
з) 299х2 + 100x = 500 - 101х2; 400х2 + 100х - 500 = 0; 4х2 + х - 5 = 0; D = 1 + 4 • 4 • 5 = 81; х = (-1±9)/8; х1 = -1 1/4; х2 = 1.