X - скорость катера в стоячей воде y - скорость течения реки или скорость плота x+y - скорость катера по течению x-y - скорость катера против течения 90/(x+y) - время катера на путь по течению 90/(x-y) - время катера на путь против течения 30/y - время плота до встречи 90/(x+y)+60/(x-y) - время катера до встречи Имеем систему 90/(x+y)+90/(x-y)=12,5 90/(x+y)+60/(x-y)=30/y или первое уравнение оставляем и приводим к общему знаменателю, а второе уравнение получаем вычитанием второго из первого. Новая система: 90(x-y+x+y)=12,5(x-y)(x+y) 30/(x-y)=12,5-30/y или 30/(x-y)+30/y=12,5; 30(y+x-y)=12,5y(x-y)
180x=12,5(x-y)(x+y) 30x=12,5y(x-y) Делим первое уравнение на 2-ое: 6=(x+y)/y⇒6y=x+y⇒x=5y подставляем во 2-е уравнение вместо x его значение 5y: 30*5y=12,5y(5y-y)⇒4y*12,5=150; 50y=150⇒y=3; x=15 Скорость катера в стоячей воде - 15 скорость течения - 3
y - скорость течения реки или скорость плота
x+y - скорость катера по течению
x-y - скорость катера против течения
90/(x+y) - время катера на путь по течению
90/(x-y) - время катера на путь против течения
30/y - время плота до встречи
90/(x+y)+60/(x-y) - время катера до встречи
Имеем систему
90/(x+y)+90/(x-y)=12,5
90/(x+y)+60/(x-y)=30/y
или первое уравнение оставляем и приводим к общему знаменателю, а второе уравнение получаем вычитанием второго из первого.
Новая система:
90(x-y+x+y)=12,5(x-y)(x+y)
30/(x-y)=12,5-30/y или 30/(x-y)+30/y=12,5; 30(y+x-y)=12,5y(x-y)
180x=12,5(x-y)(x+y)
30x=12,5y(x-y)
Делим первое уравнение на 2-ое: 6=(x+y)/y⇒6y=x+y⇒x=5y
подставляем во 2-е уравнение вместо x его значение 5y:
30*5y=12,5y(5y-y)⇒4y*12,5=150; 50y=150⇒y=3; x=15
Скорость катера в стоячей воде - 15
скорость течения - 3
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 4). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
4 = √а
(4)² = (√а)²
16 = а
а=16;
б) График функции проходит через точку М(36; m). Найдите значение m.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
m = √36
m = 6;
в) Если х∈[0; 25], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√25=5;
При х∈ [0; 25] у∈ [0; 5].
г) y∈ [13; 19]. Найдите значение аргумента.
13 = √х
(13)² = (√х)²
х=169;
19 = √х
(19)² = (√х)²
х=361;
При х∈ [169; 361] y∈ [13; 19].