В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
диас161
диас161
18.11.2020 07:00 •  Алгебра

На столе лежало в круг несколько шурупов и гаек. Кработы положили по шурупу или по гайке между каждыми двумя соседними предметами. Между двумя шурупами или двумя гайками по шурупу, а между шурупом и гайкой по гайке​

Показать ответ
Ответ:
Snupian
Snupian
03.04.2022 21:57
ОДЗ x∈(-∞; +∞)
y'=6x^2+12x=6x(x+2)
Нули производной
x=0    x=-2
                                       f'(x)
отмечаем на прямой X
                                       f(x)

 Определяем знаки ПРОИЗВОДНОЙ подставляя значения из промежутков
Отмечаем убывания и возрастания графика на соответствующих промежутках

ответ:
А) (-∞;-2) и (0; +∞) – ф-ия возрастает
     (-2; 0) – ф-ия убывает
Б) 0 и -2 – точки экстремума
В) y(-3)= -54+54-1= -1
y(-2)= -16+24-1=7
y(0)= -1
y(1)=7
7 – наибольшее значение
-1 – наименьшее значение.
0,0(0 оценок)
Ответ:
romaantonizin
romaantonizin
14.04.2022 11:41
1) y=log_5(4-2x-x^2)+3
Область определения:
4 - 2x - x^2 > 0
x^2 + 2x - 4 < 0
x^2 + 2x + 1 - 5 < 0
(x+1)^2 - (√5)^2 < 0
(x+1-√5)(x+1+√5) < 0
x ∈ (-1-√5; -1+√5)
Локальные экстремумы будут в точках, в которых производная равна 0.
Производная
y'= \frac{-2-2x}{(4-2x-x^2)*ln(5)} = \frac{-2(x+1)}{(4-2x-x^2)*ln(5)} =0
x = -1 ∈ (-1-√5; -1+√5)
y(-1)=log_5(4-(-2)-(-1)^2)+3=log_5(4+2-1)+3=1+3=4
Знаменатель > 0, потому что скобка (4-2x-x^2) > 0, по области определения логарифма. Числитель -2(x+1)>0 при x<-1, значит, график возрастает, а при x>-1 график убывает. Значит, -1 точка максимума.
ответ: Наибольшее значение y(-1) = 4

2) y=log_3(x^2-6x+10)+2
Область определения:
x^2 - 6x + 10 > 0
x^2 - 6x + 9 + 1 > 0
(x - 3)^2 + 1 > 0
Сумма квадрата и положительного числа положительна при любом x.
x ∈(-oo; +oo)
Локальные экстремумы будут в точках, в которых производная равна 0.
y' = \frac{2x-6}{(x^2-6x+10)*ln(3)} = \frac{2(x-3)}{(x^2-6x+10)*ln(3)} =0
x = 3
y(3)=log_3(9-6*3+10)+2=log_3(9-18+10)+2=0+2=2
Здесь все наоборот. Знаменатель тоже >0. Числитель 2(x-3)<0 при x<3 (график убывает) и 2(x-3)>0 при x>3 (график возрастает).
Значит, 3 - точка минимума.
ответ: Наименьшее значение y(3) = 2
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота