На столе лежат монеты. Всего 10 штук. Известно, что три монеты лежат орлом вверх, а семь – решкой. Участнику шоу завязывают глаза и подводят к столу. Он может трогать, двигать и переворачивать монеты, но не может на ощупь определить орлом или решкой вверх лежит монета. Ему надо разложить монеты в две части (не обязательно равные), чтобы количество орлов в каждой части было одинаковым. Как это сделать?
Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень.
f(-2) = -8 + 4 - 2 + 2 = -4 < 0
f(-1) = -1 + 1 - 1 + 2 = 1 > 0
x0 ∈ (-2; -1)
Можно найти примерно
f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0
f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0
x0 ∈ (-1,4; -1,3)
Можно уточнить
f(-1,35) = 0,012125 > 0
f(-1,36) = -0,025856 < 0
x0 ∈ (-1,36; -1,35)
f(-1,353) ~ 0,0008
Точность достаточна.
Остальные два корня - комплексные.
Я думаю, что это ошибка в задаче, должно было быть
x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)
б) 4x - 4y + xy - y^2 = 4(x - y) + y(x - y) = (4 + y)(x - y)
2x^2 = -18 | (делим на 2)
X^2 = -9
X1 = 3 и x2 = -3
3) x^2 + x - 6 = 0
D = b^2 -4ac
D = 1^2 - 4*1*(-6) = 1 + 24 = 25
X1 = -1+ корень из 25/2 = -1+5/2 = 4/2 = 2
X2 = -1 - корень из 25/2 = -1 -5/2 = -6/2 = -3
4) так же ка второе
5) 4x^2 - 36 = 0 | делим все на 4
X^2 - 9 = 0
X^2 = 9
X = 3 и x2= -3
6) x^4 -25x +144 = 0
X = t (тут замена, вроде)
X^2 -25x + 144 = 0
D = (-25)^2 - 4*1*144 = 625 - 576 = 49
X1 = -(-25)+ корень из 49 = 25+7 = 32
X2= -(-25) - корень из 49 = 25 -7 = 18
Дальше нужно подставлять куда-то в замену вроде, я не помню