Чтобы найти вероятность бракованных деталей, нам сложные вычисления не нужны. Если при 500 деталях - 9 бракованных, то при 1000 (500×2) деталях - 9×2бракованных = 18 бракованных деталей.
4
Площадь круга = πr², количество точек=1, количество бросаний=1
Площадь круга = πr²=12,56 см² против Площади квадрата = 16 см²
Площадь круга составляет 78,5% от площади квадрата - это и есть наша вероятность попадания в круг.
№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка:
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу:
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
3
А P=m/n, где P - вероятность; m - количество удачных попыток; n - количество попыток всего.
Следовательно: Ρ= 9 (m)/500 (n) = 9/500=0.018 (1.8%)
Чтобы найти вероятность бракованных деталей, нам сложные вычисления не нужны. Если при 500 деталях - 9 бракованных, то при 1000 (500×2) деталях - 9×2бракованных = 18 бракованных деталей.
4
Площадь круга = πr², количество точек=1, количество бросаний=1
Площадь круга = πr²=12,56 см² против Площади квадрата = 16 см²
Площадь круга составляет 78,5% от площади квадрата - это и есть наша вероятность попадания в круг.
Объяснение:
а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: .
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка:
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.