Для того, чтобы вычислить площадь фигуры, ограниченной данными линиями, мы сперва должны построить их на графике
Теперь мы видим, что функцией y = 0, наша искомая фигура разбивается на две симметричные. Их площадь будет равна, то есть для того, чтобы вычислить площадь фигуры, нам достаточно найти площадь одной её половины и умножить на "2".
Получается, площадь равна удвоенному интегралу функции х^3 от 2 до 0.
2 * инт (х^3)dx = 2 * (x^4)/4.
Подставляем наши границы "2" и "0": 2 * (x^4)/4 = 2 * ((2^4)/4 - (0^4)/4) = 2 * 4 = 8.
Попробуем в левой части выделить полный квадрат, как раз от выражения
Здесь удвоенное произведение я искусственно создал для выделения квадрата, но чтобы не нарушить равенства, надо это же удвоенное произведение с противоположным знаком добавить, что и было сделано.
Было получено два значения и не зря. Если решать уравнение из условия, то мы обязательно получим 2 корня (кроме случая x=0, на котором даже не определено второе слагаемое и потому его в расчет не берем), это и второе выражение, которое зависит от этих корней, может и будет принимать не одно лишь значение, а 2.
Объяснение:
Для того, чтобы вычислить площадь фигуры, ограниченной данными линиями, мы сперва должны построить их на графике
Теперь мы видим, что функцией y = 0, наша искомая фигура разбивается на две симметричные. Их площадь будет равна, то есть для того, чтобы вычислить площадь фигуры, нам достаточно найти площадь одной её половины и умножить на "2".
Получается, площадь равна удвоенному интегралу функции х^3 от 2 до 0.
2 * инт (х^3)dx = 2 * (x^4)/4.
Подставляем наши границы "2" и "0": 2 * (x^4)/4 = 2 * ((2^4)/4 - (0^4)/4) = 2 * 4 = 8.
ответ: S фигуры = 8.
Попробуем в левой части выделить полный квадрат, как раз от выражения
Здесь удвоенное произведение я искусственно создал для выделения квадрата, но чтобы не нарушить равенства, надо это же удвоенное произведение с противоположным знаком добавить, что и было сделано.
Было получено два значения и не зря. Если решать уравнение из условия, то мы обязательно получим 2 корня (кроме случая x=0, на котором даже не определено второе слагаемое и потому его в расчет не берем), это и второе выражение, которое зависит от этих корней, может и будет принимать не одно лишь значение, а 2.
ответ: