Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
b1q + b1q^2 = 14 разделим первое уравнение на 2-е
(1 + q^3)/(q +q^2) = -7/2
(1+q)(1 -q +q^2)/q(1 +q) = -7/2
(1 -q +q^2) /q = -7/2
2(1 - q +q^2) = -7q
2 -2q +2q^2 +7q = 0
2q^2 +5q +2 = 0
D = b^2 -4ac = 25 -16 = 9
q1= -1/2, a) b1 + b1q^3 = -49 б) q2 =-2 b1 + b1q^3 = -49
b1 +b1*(-1/8) = -49 b1 + b1*(-8) = -49
7/8 b1 = -49 -7b1 = -49
b1 = -49: 7/8= -49*8/7= =56 b1 = 7