На 50% содержание синьки в голубой краске снизилось в полтора раза, значит из того же объема синьки можно получить в полтора раза больше краски. Т.е. на 50% больше Пусть количество добавляемой синьки равно x. Пусть общее количество краски, получаемое в первом случае, равно a. Тогда, так как добавляли 15% синьки: х=0,15а Следовательно: а=х/0,15 Пусть общее количество краски, получаемое в первом случае, равно b. Тогда, так как синьки добавляли лишь 10%: х=0,1в Отсюда: в= х/0,1 Необходимо узнать, на сколько увеличился объем голубой краски во втором случае по сравнению с первой, то есть вычислить величину в-а/а Х/0,1 : х/0,15 -1=х/0,1 • 0,15/х -1 =0,15/0,1 -1= 3/2-1=1/2=50
содержание синьки в голубой краске снизилось в полтора раза, значит из того же объема синьки можно получить в полтора раза больше краски. Т.е. на 50% больше
Пусть количество добавляемой синьки равно x. Пусть общее количество краски, получаемое в первом случае, равно a. Тогда, так как добавляли 15% синьки: х=0,15а Следовательно: а=х/0,15
Пусть общее количество краски, получаемое в первом случае, равно b. Тогда, так как синьки добавляли лишь 10%: х=0,1в Отсюда: в= х/0,1
Необходимо узнать, на сколько увеличился объем голубой краски во втором случае по сравнению с первой, то есть вычислить величину в-а/а
Х/0,1 : х/0,15 -1=х/0,1 • 0,15/х -1 =0,15/0,1 -1= 3/2-1=1/2=50
ответ:ешим уравнение и найдем корень уравнения:
sin^2 x + 2 * sin x * cos x - 3 * cos^2 x = 0;
Делим уравнение на cos^2 x.
sin^2 x/cos^2 x + 2 * sin x * cos x/cos^2 x - 3 * cos^2 x/cos^2 x = 0;
(sin x/cos x)^2 + 2 * (sin x/cos x) - 3 * 1 = 0;
tg^2 x + 2 * tg x - 3 = ;
Найдем дискриминант квадратного уравнения:
D = 4 - 4 * 1 * (-3) = 16;
tg x1 = (-2 + 4)/2 = 2/2 = 1;
tg x2 = (-2 - 4)/2 = -6/2 = -3;
1) tg x = 1;
x = arctg (1) + pi * n, где n принадлежит Z;
x = pi/4 + pi * n, где n принадлежит Z;
2) tg x= -3;
x = arctg (-3) + pi * n, где n принадлежит Z;
x = -arctg (3) + pi * n, где n принадлежит Z.
Объяснение: