угол В=90, а sin90=1 16/1=8√3/sinA sinA =8√3/16=√3/2 угол А=60, значит угол С=180-(90+60)=30
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному. угол С=НВА=30 А=СВН=60
В1 при х=-0.5 у=-4 в вершине параболы наименьшее зн-ние (ветки параболы смотрят вверх) В2 при х=3 у=8 в вершине параболы наибольшее зн-ние (ветки параболы смотрят вниз) С1. усл-вие не совсем ясно - корень из 3х это как множитель при n? Если да, то наименьшее зн-ние в вершине параболы, ветки смотрят вверх х= у=-5
_______________________ Вершина параболы находится по формуле y найти можно, подставив х в изначальную ф-цию Куда ветки направлены показывает коэффициент перед , если он положительный - ветки вверх, отриц. - ветки вниз
ответ: 3) ВС1=6 4) С=НВА=30 А=СВН=60
Объяснение: 3)Угол АВС=180-(60+80)=40 СС1-биссектриса АСВ, значит угол ВСС1=ВСА/2=80/2=40 ВСС1=СВС1, т.е. треуг. ВСС1 равнобедрен. с основанием ВС, т.е. ВС1=СС1=6
4) по т.синусов Стороны треугольника пропорциональны синусам противолежащих углов. 16/sinB=8/sinC=8√3/sinA
AC^2=AB^2+BC^2 (т.Пифагора) BC^2=16^2-8^2=192 BC=8√3
угол В=90, а sin90=1 16/1=8√3/sinA sinA =8√3/16=√3/2 угол А=60, значит угол С=180-(90+60)=30
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному. угол С=НВА=30 А=СВН=60
А3 4)
А4 3)
В1 при х=-0.5 у=-4 в вершине параболы наименьшее зн-ние (ветки параболы смотрят вверх)
В2 при х=3 у=8 в вершине параболы наибольшее зн-ние (ветки параболы смотрят вниз)
С1. усл-вие не совсем ясно - корень из 3х это как множитель при n?
Если да, то наименьшее зн-ние в вершине параболы, ветки смотрят вверх
х= у=-5
_______________________
Вершина параболы находится по формуле
y найти можно, подставив х в изначальную ф-цию
Куда ветки направлены показывает коэффициент перед , если он положительный - ветки вверх, отриц. - ветки вниз