4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 56 см² больше площади другого. Найдите площадь прямоугольника, если известно, что длина прямоугольника на 4 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 4
у² - х² = 56
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
В решении.
Объяснение:
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 56 см² больше площади другого. Найдите площадь прямоугольника, если известно, что длина прямоугольника на 4 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 4
у² - х² = 56
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
(х + 4)² - х² = 56
х² + 8х + 16 - х² = 56
8х = 56 - 16
8х = 40
х = 40/8
х = 5 (см) - ширина прямоугольника.
5 + 4 = 9 (см) - длина прямоугольника.
Проверка:
9² - 5² = 81 - 25 = 56 (см²), верно.
2) Найти площадь прямоугольника:
S = 9 * 5 = 45 (см²).
б) производная = 3х² - 4х +1
3х² - 4х +1 = 0
х = (2 +-√(4-3))/3 = (2 +- 1)/3
х1 = 1 и х2 = 1/3 (критические точки)
2)а) производная = 4х - 3
4х - 3 = 0
х = 3/4
-∞ - 3/4 + +∞ Это знаки производной
min
б) производная = 3х² -4х +1
3х² - 4х + 1 = 0
х1 = 1, х2 = 1/3
-∞ + 1/3 - 1 + +∞ Это знаки производной
max min
3) а) производная = 4 >0 ⇒ данная функция возрастающая на всей области определения.
б)производная = 3х² - 4х + 1
3х² - 4х + 1 = 0
х1 = 1, х2 = 1/3
-∞ + 1/3 - 1 + +∞ Это знаки производной
возраст убывает возрастает