Давай сначала попробуем понять, что вообще это такое
Функция - это, в первую очередь, зависимость одной переменной от другой.
Таким образом, в каждой функции есть зависимая и независимая переменная (пускай она, как и в этом случае, скрыта, но в этом случае ее видно на графике, когда он будет построен). Зависимая переменная часто обозначается буквой "у", а независимая - "х".
Перед нами - обычная линейная функция, пускай она и задана слегка непривычно.
Справка:
Линейная функция - функция, график которой - прямая линия.
Это чудо имеет особый вид записи - y=kx+b, и каждый из коэффициентов (так называются переменные k и b) указывают на что-то свое, так уж получилось. k в этой записи означает наклон графика. Если в функции положительный k - график возрастает (то есть, чем больше х, тем больше у), если отрицательный - опадает (чем меньше х, тем больше значение у).
Перед дальнейшим хочу отметить, что любая точка на координатной плоскости задается 2-мя значениями - х и у, именно в таком порядке. у - "высота" этой точки, а х - "расстояние" от точки начала координат.
С b в этом несколько проще - он означает, в какой точке график пересечет ось y, какая у этой точки будет ордината (значение y).
В нашем случае y=-3 х и y=2 - в функции, казалось-бы. отсутствует переменная х. Но, как бы ни так, давай попробуем все-таки построить график.
И тут мы видим, что х никуда не делся, просто наклона у функции нет. А. значит, коэффициент k стал равен 0. Таким образом, функция "в реальности" имеет вид "y=0x-3", и значение х тут не влияет на у (так как при умножении на 0 произведение всегда равно 0), и его решили убрать.
См фото, но и в объяснение загляни. это полезно
Объяснение:
Давай сначала попробуем понять, что вообще это такое
Функция - это, в первую очередь, зависимость одной переменной от другой.
Таким образом, в каждой функции есть зависимая и независимая переменная (пускай она, как и в этом случае, скрыта, но в этом случае ее видно на графике, когда он будет построен). Зависимая переменная часто обозначается буквой "у", а независимая - "х".
Перед нами - обычная линейная функция, пускай она и задана слегка непривычно.
Справка:
Линейная функция - функция, график которой - прямая линия.
Это чудо имеет особый вид записи - y=kx+b, и каждый из коэффициентов (так называются переменные k и b) указывают на что-то свое, так уж получилось. k в этой записи означает наклон графика. Если в функции положительный k - график возрастает (то есть, чем больше х, тем больше у), если отрицательный - опадает (чем меньше х, тем больше значение у).
Перед дальнейшим хочу отметить, что любая точка на координатной плоскости задается 2-мя значениями - х и у, именно в таком порядке. у - "высота" этой точки, а х - "расстояние" от точки начала координат.
С b в этом несколько проще - он означает, в какой точке график пересечет ось y, какая у этой точки будет ордината (значение y).
В нашем случае y=-3 х и y=2 - в функции, казалось-бы. отсутствует переменная х. Но, как бы ни так, давай попробуем все-таки построить график.
И тут мы видим, что х никуда не делся, просто наклона у функции нет. А. значит, коэффициент k стал равен 0. Таким образом, функция "в реальности" имеет вид "y=0x-3", и значение х тут не влияет на у (так как при умножении на 0 произведение всегда равно 0), и его решили убрать.
Второе - по аналогии
выполнить умножение:
а) 2х * (х^2 + 8х - 3) = 2х^3 + 16х^2 - 6х=2х^3 + 16х^2 - 6х.
б) -3а * (а^2 + 2ас - 5с) = -3а^3 - 6а^с + 15ас.=-3а^3 - 6а^с + 15ас.
в) 0,3ху * (2ху^2 - 4х^2у + 3ху) = 0,6х^2у^3 - 1,2х^3у^2 + 0,9х^2у^2.
упростить выражение:
а) -2х(х + 4) +5(х2 – 3х)= -X-8-10-4+9
б) 2а(3а – а2) – 4а(2а2 – 5а)=9a-a2 -8 -4 +2 -10
Решить уравнение:
а) 5х(х- 4) –х(3 + 5х) =4
5х²-20х-3х-5х²=4
-23х=4
х=-4\23
б) 7х – 2х2 + 4 = х(5 – 2х)
7x-2x²+4=x(5-2x)
7x-2x²+4=5x-2x²
7x+4-5x=0
2x+4=0
2x=-4
X=-2
в) 2х(3х – 2) -3(х2 – 4х) =3х(х – 7) +2
6x-4-12x+9=2
-6x+5=2-4x
-6x+4x=2-5
-2x=-3
х=(-3):(-2)
х=1,5
Объяснение: