Сначала возводим одночлены в степень, потом у нового одночлена складываем показатели степеней, которые получатся у букв. Показатели степеней у чисел прибавлять не надо!
1) (2/3ab²)³ = 4/9a²b⁴, степень равна 2 + 4 = 6;
2) (3/4a²b³)⁴ = (3/4)⁴a⁸b¹², степень равна 8 + 12 = 20;
3) (4/3m⁵n²)⁵ = (4/3)⁵m²⁵n¹⁰, степень равна 25 + 10 = 35;
4) (2/9m¹⁰n¹³)³ = (2/9)²m²⁰n³⁹, степень равна 20 + 39 = 59;
5) (–0,6a³b⁴)⁴ = +(0,6)⁴a⁸b¹⁶, степень равна 8 +16 = 24;
6) (–1,3x¹⁰y⁴)³ = +1,69x²⁰y⁸, степень равна 20 + 8 = 28 ;
7) (0,02m³n³)² = 0,0004m⁶n⁴, степень равна 6 + 4 = 10;
8) (0,5x³y⁵)³ = 0,125x⁹y¹⁰, степень равна 9 + 10 = 19.
1) (х-2)/(2х -4) = (х-2)/2(х-2) = 1/2
2)log√2(1/2) ≤ log√2 (x+1)/(x +2), √2>1, ⇒
⇒ 1/2 ≤ (х+1)/(х+2) (x +2 -2x -2)/(2(x+2)) ≤0 -x/2(х+2) ≤ 0
(х+1)/(х+2) > 0 нули -1 и -2 -∞ + -2 - -1 + +∞
x -2> 0, ⇒ х > 2, ⇒
Ищем решение:
-∞ - -2 + -1 + 0 - 2 - -∞
ответ: (2;+∞)
Объяснение:
Сначала возводим одночлены в степень, потом у нового одночлена складываем показатели степеней, которые получатся у букв. Показатели степеней у чисел прибавлять не надо!
1) (2/3ab²)³ = 4/9a²b⁴, степень равна 2 + 4 = 6;
2) (3/4a²b³)⁴ = (3/4)⁴a⁸b¹², степень равна 8 + 12 = 20;
3) (4/3m⁵n²)⁵ = (4/3)⁵m²⁵n¹⁰, степень равна 25 + 10 = 35;
4) (2/9m¹⁰n¹³)³ = (2/9)²m²⁰n³⁹, степень равна 20 + 39 = 59;
5) (–0,6a³b⁴)⁴ = +(0,6)⁴a⁸b¹⁶, степень равна 8 +16 = 24;
6) (–1,3x¹⁰y⁴)³ = +1,69x²⁰y⁸, степень равна 20 + 8 = 28 ;
7) (0,02m³n³)² = 0,0004m⁶n⁴, степень равна 6 + 4 = 10;
8) (0,5x³y⁵)³ = 0,125x⁹y¹⁰, степень равна 9 + 10 = 19.