Надо! решите что можете)заранее 1. выражение ctg(2п+a)*sin(п\2+a) cos(п-a)*tg(3п\2-a) 2.вычислите значение выражения 16sin12º*cos12º*cos24º cos 42º 3.найдите значение выражение (ctg(arccos (в минус второй) 4.вычислите 2tg(5п\2-a) 5ctg(a+5п) ,если a=5п\6 5.найдите значение выражения -3sina+4cosa 5cos a+2 sina ,если tg a=-2 6. выражение cos^2 b+sin ^4b+ sin ^2b+cos^2b 7.вычислите sin (a+b)-2cosa ,если sin a=12\13 , sin b 3\5, причем a и b углы первой четверти 8. выражение tg 17º*tg 23º+(tg 17º+tg23º)*ctg 40º
1
Здесь заметим, что первый из углов - это 2π или π/2. Значит, воспользуемся формулами приведения:
ctg(2п+a)*sin(п\2+a) / (cos(п-a)*tg(3п\2-a) = ctg a * cos a / -cos a * ctg a = cos a / -cos a = -1
2
Cначала преобразуем числитель отдельно. Для его преобразований воспользуемся формулами двойного аргумента.
16sin12º*cos12º*cos24º = 8 * 2sin12º*cos12º*cos24º = 8sin 24°cos 24° = 4 * 2sin 24°cos 24° = 4sin 48°
Получим,
4sin 48° / cos 42° = 4sin(90° - 42°) / cos 42° = 4cos 42° / cos 42° = 4
3
Здесь вся сложность заключается в том, чтобы найти точное значение выражения ctg(arccos 1/4). Поэтому для его нахождения воспользуемся методом прямоугольного треугольника(рисунок сейчас приложу). Рассмотрим прямоугольный треугольник.
Пусть arccos 1/4 = α, тогда по определению арккосинуса cosα = 1/4
По сути, как несложно догадаться, нам нужно найти ctg α, зная его косинус.
cos α = a/c
a/c = 1/4, отсюда a = 1, c = 4
ctg α = a/b, не хватает только лишь b. Найдём её по теореме Пифагора,
b² = c² - a²
b² = 16 - 1 = 15
b = √15
Тогда, ctg α = a/b = 1/√15 = √15/15
Но α = arccos 1/4. Значит, ctg(arccos 1/4) = √15/15
Теперь осталось только верно посчитать:
2⁻² = 1/4
√15 / 15 - 1/4 = (2√15 - 15 )/ 60