Искомые числа А0, А, А1, А2. Пусть q - знаменатель геометрической прогрессии, тогда имеем: А1 = А* q и A2 = A*q*q и, кроме того, так как первые три числа - арифметическая прогрессия, её шаг равен А1 - А, откуда находим первое число: А0 = А - (А1 - А) сумма второго и третьего числа равна 6 по условию: А + А*q = 6, или A = 6/(1+q) Сумма крайних чисел равна 7: 2*А - A*q + A*q**2 = 7 подставляем А и получаем квадратное уравнение: q**2 - q + 2 = 7/6*(1+q) Преобразуем: 6q**2 - 13q + 5 + 0 имеем два корня: q = 1/2 и q = 5/3. Искомые числа соответственно 6 4 2 1 и 3/4 9/4 15/4 25/4
Пусть q - знаменатель геометрической прогрессии, тогда имеем:
А1 = А* q и A2 = A*q*q
и, кроме того, так как первые три числа - арифметическая прогрессия, её шаг равен А1 - А, откуда находим первое число:
А0 = А - (А1 - А)
сумма второго и третьего числа равна 6 по условию:
А + А*q = 6, или A = 6/(1+q)
Сумма крайних чисел равна 7:
2*А - A*q + A*q**2 = 7
подставляем А и получаем квадратное уравнение:
q**2 - q + 2 = 7/6*(1+q)
Преобразуем:
6q**2 - 13q + 5 + 0
имеем два корня: q = 1/2 и q = 5/3.
Искомые числа соответственно 6 4 2 1 и 3/4 9/4 15/4 25/4
= 8√3 - 5*2√3 + 4*5√3 = (8-10 +20)√3 = 18√3
(√20 + √80)√5 = √20 * √5 + √80 *√5 = √(20*5) + √(80*5) =
= √100 + √400 = √10² + √20² = 10 + 20 = 30
(2√7 +3)² = (2√7)² + 2*2√7 * 3 + 3² = 4*7 + 12√7 + 9 =
= (28 + 9) + 12√7 = 37 + 12√7
(6√3 + 3√5) (6√3 - 3√5) = (6√3)² - (3√5)² = 36*3 - 9*5 = 108-45=63
№2.
6√3 = √(36*3) = √108
3√8 = √(9 *8) = √72
√108 > √72 ⇒ 6√3 > 3√8
4√(¹⁵/₈) = √ (16 * ¹⁵/₈ ) = √30
¹/₃ * √750 = √(¹/₉ * 750) = √ (²⁵⁰/₃) = √(83 ¹/₃ )
√30 < √ (83 ¹/₃) ⇒ 4√(¹⁵/₈) < ¹/₃ *√750