1. на фото. Чтобы функция была четной. /нечетной/, надо выполнение двух условий. 1 ) ЕЕ область определения была симметрична относительно начала системы координат.
2) f(-x)=f(x) /f(-x)=f(x)/
1) Областью определения является любое число действительное, подставим вместо х минус икс. получим у(-x)=-8*(-х)+(-х)²+(-х)³=
8*х+х²-х³; f(-x)≠f(x)⇒ не является четной. /f(-x)≠f(x)⇒ не является нечетной/ Это функция общего вида.
2)область определения определим из неравенства х³+х²≥0;
х²*(х+1)≥0; х=0; х=-1.
-10
- + +
Область определения х∈[-1;+∞) не выполняется условие симметрии области определения относительно нуля. это функция ни четная. ни нечетная. т.к. не выполняется условие симметрии области определения относительно нуля.
2. 1)парабола ветвями вниз, значит, наименьшего значения нет. а наибольшее в вершине параболы при х=-1.5
у(-1.5)=-2.25+4.5-6.25=-4
2)парабола ветвями вверх. т.к. старший коэффициент положителен. вершина параболы х=1/2
у(1/2)=1/4-1/2+3.75=0.25+3.75-0.5=3.5 наименьшее значение функции, а наибольшего нет.
для этого еблана в Задача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює решта
Объяснение:
Задача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює рештаЗадача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює решта
1. на фото. Чтобы функция была четной. /нечетной/, надо выполнение двух условий. 1 ) ЕЕ область определения была симметрична относительно начала системы координат.
2) f(-x)=f(x) /f(-x)=f(x)/
1) Областью определения является любое число действительное, подставим вместо х минус икс. получим у(-x)=-8*(-х)+(-х)²+(-х)³=
8*х+х²-х³; f(-x)≠f(x)⇒ не является четной. /f(-x)≠f(x)⇒ не является нечетной/ Это функция общего вида.
2)область определения определим из неравенства х³+х²≥0;
х²*(х+1)≥0; х=0; х=-1.
-10
- + +
Область определения х∈[-1;+∞) не выполняется условие симметрии области определения относительно нуля. это функция ни четная. ни нечетная. т.к. не выполняется условие симметрии области определения относительно нуля.
2. 1)парабола ветвями вниз, значит, наименьшего значения нет. а наибольшее в вершине параболы при х=-1.5
у(-1.5)=-2.25+4.5-6.25=-4
2)парабола ветвями вверх. т.к. старший коэффициент положителен. вершина параболы х=1/2
у(1/2)=1/4-1/2+3.75=0.25+3.75-0.5=3.5 наименьшее значение функции, а наибольшего нет.