1) (x+2)(x-3)-x(x-1)=90 x^2+2x-3x-6-x^2+x=90 0х=96 Действительных решений нет ответ: ∅
2) x^2-8x+20 Рассмотри график функции x^2-8x+20. Найдем нули, где функция пересекает ось х x^2-8x+20=0 D=64-4*20=64-80=-16 Действительных решений нет, значит график у=x^2-8x+20 не пересекает ось Ох Графиком функции у=x^2-8x+20 является парабола. Т. к при старшей степени (x^2) стоит положительный коэффициент = 1, то ветви параболы направлены вверх. Из этого следует, что график у = x^2-8x+20 лежит выше оси Ох и принимает только положительные значения
Решить систему из двух уравнений (или же неравенств) - значит найти все x, которые удовлетворяют обоим уравнениям (т. е. после подстановки каждого из этих x в оба уравнения получается что знак между частями уравнения (>, <, = и т. д.) верен)
Проще всего начать со второго уравнения поскольку там знак равно: x^2 = 36 чтобы найти x нужно к 36 применить операцию, обратную возведению в крадрат - операцию взятия корня:
x = 6 но при этом не только квадрат 6 равен 36, но и квадрат -6, так что x = -6 больше значений x функция нам взять не позволяет
Итак, у нас есть два значения x при которых второе уравнение верно, нужно проверить какие из них подходят и к первому: при подстановке x = 6 в первое уравнение получаем 36 + 12 - 15 > 0 получаем верное неравенство, значит x = 6 является одним из решений системы при подстановке x = -6 36 - 12 - 15 >0 получаем верное неравенство, значит x = -6 является еще одним из решений системы
оба решения второго подходят и для первого, следовательно они оба являются решениями системы
x^2+2x-3x-6-x^2+x=90
0х=96
Действительных решений нет
ответ: ∅
2) x^2-8x+20
Рассмотри график функции x^2-8x+20. Найдем нули, где функция пересекает ось х
x^2-8x+20=0
D=64-4*20=64-80=-16
Действительных решений нет, значит график у=x^2-8x+20 не пересекает ось Ох
Графиком функции у=x^2-8x+20 является парабола. Т. к при старшей степени (x^2) стоит положительный коэффициент = 1, то ветви параболы направлены вверх.
Из этого следует, что график у = x^2-8x+20 лежит выше оси Ох и принимает только положительные значения
Проще всего начать со второго уравнения поскольку там знак равно:
x^2 = 36
чтобы найти x нужно к 36 применить операцию, обратную возведению в крадрат - операцию взятия корня:
x = 6
но при этом не только квадрат 6 равен 36, но и квадрат -6, так что x = -6
больше значений x функция нам взять не позволяет
Итак, у нас есть два значения x при которых второе уравнение верно, нужно проверить какие из них подходят и к первому:
при подстановке x = 6 в первое уравнение получаем
36 + 12 - 15 > 0
получаем верное неравенство, значит x = 6 является одним из решений системы
при подстановке x = -6
36 - 12 - 15 >0
получаем верное неравенство, значит x = -6 является еще одним из решений системы
оба решения второго подходят и для первого, следовательно они оба являются решениями системы
ответ: x = 6; x = -6