В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Tto2036
Tto2036
18.03.2020 12:17 •  Алгебра

Написать уравнение к касательной y=3-x^2-x^5 в точке x0=0

Показать ответ
Ответ:
Анастасия10998
Анастасия10998
06.10.2020 15:39
Уравнение касательной представляется в виде y = f(x₀) + f'(x₀)(x - x₀)
f(x₀) = y(0) = 3 - 0 - 0 = 3
f'(x) = y' = (3 - x² - x⁵)' = -2x - 5x⁴
f'(x₀) = y'(y) = 0 - 0 = 0
y = 3 + 0·(x - 3) = 3
Проверим, будет ли касательная пересекать график данной функции:
3 - x² - x⁵ = 3
-x² - x⁵ = 0
x² + x⁵ = 0
x²(1 + x³) = 0
x = -1; 0
Значит, в точке x₀ = 0 касательной не существует.
ответ: нет касательной в данной точке. 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота