В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Написать уравнение касательной к графику функции f(x)=sin2x в точке с абсциссой x0=-п/6.

Показать ответ
Ответ:
markay
markay
05.10.2020 00:52
F(x) =sin2x
f(x)=2sinxcosx
y=f(x0)+f'(x0)(x-x0)
y(x0)=2*1/2*корень из 3/2= корень из 3 / 2
y'=u'v+uv'=cosx*cosx-sinx*sinx=cos^2x+sin^2x=
y'(x0)=3/4+1/4=1
y=корень из 3/2+1(х+п/6)
у=корень из 3/2+х+п/6
у=(корень из 3)пи/3+х
0,0(0 оценок)
Ответ:
mlyz
mlyz
05.10.2020 00:52
f(x)=sin2x,   x_0=- \frac{ \pi }{6}
 y=f(x_0)+f'(x_0)(x-x_0) -   уравнение касательной
f'(x)=(sin2x)'=cos2x*(2x)'=2cos2x
f'(- \frac{ \pi }{6} )=2cos(2*(- \frac{ \pi }{6}))=2cos \frac{ \pi }{3}=2*0.5=1
f(- \frac{ \pi }{6} )=sin(2*(- \frac{ \pi }{6} ))=-sin \frac{ \pi }{3} =- \frac{ \sqrt{3} }{2}

y=- \frac{ \sqrt{3} }{2} +1*(x+ \frac{ \pi }{6})
y=- \frac{ \sqrt{3} }{2} +x+ \frac{ \pi }{6}
y=x+ \frac{ \pi-3 \sqrt{3} }{6}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота