В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Anya2k17
Anya2k17
23.08.2022 10:06 •  Алгебра

Написать уравнение касательной к графику функции y=(3x-5)/(x-3), параллельной прямой y=-4x-31.

Показать ответ
Ответ:
plore
plore
08.10.2020 14:41
Касательная - линейная функция. Раз касательная параллельная прямой у=-4х-31, то угловые коэффициенты прямых совпадают (k=-4).

Найдем производную функции первого порядка:
   y'=\displaystyle\bigg( \frac{3x-5}{x-3}\bigg)'= \frac{(3x-5)'(x-3)-(3x-5)(x-3)'}{(x-3)^2} =\\ \\ \\ = \frac{3(x-3)-(3x-5)}{(x-3)^2}= \frac{3x-9-3x+5}{(x-3)^2}=- \frac{4}{(x-3)^2}

Геометрический смысл производной. Производная в точке x₀ равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.
y'(x_0)= -\dfrac{4}{(x_0-3)^2} =-4\\ \\ 1=(x_0-3)^2\\ \\ 1-(x_0-3)^2=0\\ (1-x_0+3)(1+x_0-3)=0\\ (4-x_0)(x_0-2)=0

Откуда получаем x_0=4 и x_0=2 - точки касания.

Найдем уравнение касательной графика функции y(x) в точке касания x₀=4
f(x)=y'(x_0)(x-x_0)+y(x_0) - общий вид уравнения касательной.

Найдем значение функции в точке х₀=4:
y(4)= \dfrac{3\cdot4-5}{4-3} =7

f_1(x)=-4(x-4)+7=-4x+16+7=\boxed{-4x+23} - уравнение касательной в точке х₀=4

Найдем значение функции в точке х₀=2:
y(2)= \dfrac{3\cdot2-5}{2-3} =-1

f_2(x)=-4(x-2)-1=-4x+8-1=\boxed{-4x+7} - уравнение касательной в точке х₀=2

Написать уравнение касательной к графику функции y=(3x-5)/(x-3), параллельной прямой y=-4x-31.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота