Уравнение прямой проходящей через (2,6) в общем виде y=ax+6-2a=a(x-2)+6 При x=0 имеем y=-2a+6 При y=0 имеем 0=a(x-2)+6, x-2=-6/a, x=(2a-6)/a Стороны отсекаемого треугольника равны |6-2a|, и |(2a-6)/a| То есть При a>0 имеем 10a=2(3-a)^2, отсюда a=11/2+-sqrt(85)/2 При a<0 -10a=2(3-a)^2, корней нет. ответ a=11/2+-sqrt(85)/2
y=ax+6-2a=a(x-2)+6
При x=0 имеем y=-2a+6
При y=0 имеем 0=a(x-2)+6, x-2=-6/a, x=(2a-6)/a
Стороны отсекаемого треугольника равны |6-2a|, и |(2a-6)/a|
То есть
При a>0 имеем 10a=2(3-a)^2, отсюда a=11/2+-sqrt(85)/2
При a<0 -10a=2(3-a)^2, корней нет.
ответ a=11/2+-sqrt(85)/2