Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3)
АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех
аналогично все остальные стороны
ВС=(2-2;-2-4)=(0;-6)
длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6
АС=(2-(-6);-2-1)=(8;-3)
АС=корень квадратный из суммы квадратов координат
получаем, что и длина АС равна корень из 75
АВ=АС, то есть треуг равноб
( x + 2xy ) * ( 2x - 1 )
x-y x^2-2xy+y^2 x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2)* ( 2x - 1 )
(x-y) (x^2-2xy+y^2 ) x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
(x^3-xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x(x^2-y^2)*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x((x-y)(x+y)))*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x*(2x - 1 )
(x^2-2xy+y^2 )
x*(2x - 1 )
(x-y)^2
подставляем
-2(-4-1) = 10
9 9