Определим моменты времени, когда камень находился на высоте ровно 9 метров. Для этого решим уравнение h(t)=9:
Проанализируем полученный результат: поскольку по условию задачи камень брошен снизу вверх, это означает, что в момент времени t=0,6(с) камень находился на высоте 9 метров, двигаясь снизу вверх, а в момент времени t=3(с) камень находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее девяти метров 2,4 секунды.
ответ: 2,4.
5)Задание
Пусть х- скорость лодки в стоячей воде;
тогда х-2 и х+2 скорость лодки соответственно против течения и по течению
1)Задание
Интервал (часы) 0-1 1-2 2-3 3-4
Частота 3 9 12 6
30-100% х=(6*100)/30
6-х% х=20%- выполняют домашнее более трех частот
2)Задание
а)2016
б)20%
3)Задание
СОРИ НЕ ЗНАЮ
4)Задание
Определим моменты времени, когда камень находился на высоте ровно 9 метров. Для этого решим уравнение h(t)=9:
Проанализируем полученный результат: поскольку по условию задачи камень брошен снизу вверх, это означает, что в момент времени t=0,6(с) камень находился на высоте 9 метров, двигаясь снизу вверх, а в момент времени t=3(с) камень находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее девяти метров 2,4 секунды.
ответ: 2,4.
5)Задание
Пусть х- скорость лодки в стоячей воде;
тогда х-2 и х+2 скорость лодки соответственно против течения и по течению
8/(x-2) время против течения
12/(x+2)-время по течению
в сумме по условию это составило 2 часа
8/(x-2)+12/(x+2)=2
4/(x-2)+6/(x+2)=1
(4x+8+6x-12)=x^2-4
10x-4=x^2-4
x=10
В решении.
Объяснение:
Применить формулы сокращённого умножения:
1)(5х+3у)²=25х²+30ху+9у²;
2)(4а-7в)²=16а²-56ав+49в²;
3)81х²-121у²=(9х-11у)(9х+11у);
4)(10х-3у)(10х+3у)=100х²-9у²;
5)(2х+3у)³=
6)(5х-4у)³=
7)27х³+1000у³=
8)64а³-343в³=
Вынести общий множитель за скобки:
1)3х+3у=3(х+у);
2)10х-15у=5(2х-3у);
3)4х(3х+2у)+5(3х+2у)=(3х+2у)(4х+5);
Разложить на множители многочлен:
1)ах+ау+5х+5у=(ах+ау)+(5х+5у)=а(х+у)+5(х+у)=(х+у)(а+5);
2)вх+в+10х+10=(вх+в)+(10х+10)=в(х+1)+10(х+1)=(х+1)(в+10);
3)4х-4у-7сх+7ус=(4х-4у)-(7сх-7ус)=4(х-у)-7с(х-у)=(х-у)(4-7с);
4)х²+хв-7х-7в=(х²-7х)+(хв-7в)=х(х-7)+в(х-7)=(х-7)(х+в);
5)х³-12+6х²-2х=(х³+6х²)-(12+2х)=х²(х+6)-2(х+6)=(х+6)(х²-2).