11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a = = 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*) Заметим, что 1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9 2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a) Подставляем (*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a = = 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a = = 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) = = 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a = = 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 = = 10(sin^2 a - 1/10)^2 + 109/10 Минимальное значение квадрата равно 0, а всего выражения 109/10.
В решении.
Объяснение:
1) Сократить дробь:
а) 39х³у/26х²у²=
сократить (разделить) 39 и 26 на 13, х³ и х² на х², у² и у на у:
=3х/2у;
б) 5у/(у²-2у) = 5у/у(у-2) =
сократить (разделить) у и у на у:
= 5/(у-2);
в) (3а-3b)/(a²-b²)=
в числителе вынести 3 за скобки, в знаменателе разность квадратов, развернуть:
=3(a-b)/(a-b)(a+b)=
сократить (разделить) (a-b) и (a-b) на (a-b):
=3/(a+b).
2) Представить в виде дроби:
а) (3-2а)/2а - (1-а²)/а²=
общий знаменатель 2а², надписываем над числителями дополнительные множители:
= [а*(3-2а) - 2*(1-а²)] / 2a²=
=(3а-2а²-2+2а²) / 2a²=
=(3а-2)/2a²;
б) 1/(3х+у) - 1/(3х-у)=
общий знаменатель (3х+у)(3х-у), надписываем над числителями дополнительные множители:
= [(3х-у)*1 - (3х+у)*1] / (3х+у)(3х-у)=
=(3х-у-3х-у) / (3х+у)(3х-у)=
разность квадратов в знаменателе свернуть:
= -2у/(9х²-у²);
в) (4-3в)/(в²-2в) + 3/(в-2)=
= (4-3в)/в(в-2) + 3/(в-2)=
общий знаменатель в(в-2), надписываем над числителями дополнительные множители:
= [1*(4-3в) + в*3] / в(в-2)=
=(4-3в+3в) / в(в-2)=
= 4/в(в-2).
3) Найти значение выражения:
(х-6у²)/2у + 3у= при х= -8; у=0,1
=(х-6у²+6у²)/2у=
=х/2у=
= -8/0,2=
= -40.
4) Упростить:
2/(х-4) - (х+8)/(х²-16) - 1/х= 16/х(х²-16)
=2/(х-4) - (х+8)/(х-4)(х+4) - 1/х=
общий знаменатель х(х-4)(х+4), надписываем над числителями дополнительные множители:
=[х(х+4)*2 - х(х+8) - (х-4)(х+4)*1] / х(х-4)(х+4)=
=(2х²+8х-х²-8х-х²+16) / х(х-4)(х+4)=
разность квадратов в знаменателе свернуть:
= 16/х(х²-16)
= 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*)
Заметим, что
1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9
2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a =
= (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a)
Подставляем
(*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a =
= 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a =
= 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 =
= 10(sin^2 a - 1/10)^2 + 109/10
Минимальное значение квадрата равно 0, а всего выражения 109/10.