2. Из предложенных четырех пар чисел выбрите ту, которая является недопустимой для алгебраической дроби
2а²+3аb-b³
=b²-9a²>0 (b-3a)(b+3a) >0 видно что (3;1) так как =0
b²-9a²
3. Какое из четырех равенств не является тоджеством: 1. х³-8=(х-2)(х²+2х+4) Верно так как это разность кубов 2. х³+27=(х+3)(х²+3х+9) нет 3. х²-8х+16=(х-4)² да 4. х²+4ху+4у²=(х+2у)² да
1. Упростите выражение
-12х+3ху-2(х+3ху)
-12x+3xy-2x-6xy= -14x-3xy
2. Из предложенных четырех пар чисел выбрите ту, которая является недопустимой для алгебраической дроби
2а²+3аb-b³
=b²-9a²>0 (b-3a)(b+3a) >0 видно что (3;1) так как =0
b²-9a²
3. Какое из четырех равенств не является тоджеством:
1. х³-8=(х-2)(х²+2х+4) Верно так как это разность кубов
2. х³+27=(х+3)(х²+3х+9) нет
3. х²-8х+16=(х-4)² да
4. х²+4ху+4у²=(х+2у)² да
(72²-28²)/(61²-39²) =(72-28)(72 + 28 )/ (61-39)(61+39)=2
4а⁷b¹⁵-4a⁵b¹⁷ 4a⁵b¹⁵(a²-b²) 2ab¹¹ (a-b)(a+b) -2ab¹¹ (a+b) = -2*3*-1*2=12
= = =
2a⁴b⁵-2a⁵b⁴ 2a⁴b⁴(b-a) -(a-b)
6.Преобразовав линейное уравнение 2х+3у-3=0 к виду линейной функции у=кх+м, найдите ее угловой коэффициент.
3y=3-2x
y=-2x/3+1
ответ -2/3
7.Найдите наибольшее значение функции у=3х-1 на отрезке [0,⅓]
f(0) = -1
f(1/3)=0
значит 0
8. Дана фунция у=f(x), где
| x², если -3≤ х ≤ 0;
|3x-1, если 0<х<2
|х, если х ≥ 2
Чему равно f(2)?
2 попадает на интервал x значит равна y=2
9.Какая из предложенных четырех пар чисел (x;y) является решением системы уравнений
|3x+y=7
|5x-8y=31
|y=7-3x
|5x-56+24x=31
|29x=87
|x=3
|y=-2
n(n² + 6n + 5) кратно шести.
6n² и так кратно шести, поэтому n³ + 5n кратно шести.
Пускай при делении n на 6 получим х плюс у в остаче, т. е. n/6 = x + y, тогда n можно записать как 6x + y, x ∈ Z, x ≥ 0, y ∈ {0;1;2;3;4;5}.
(6x + y)³ + 5*(6x + y) = (6x + y)((6x + y)² + 5) = (6x + y)(36x² + 12xy + y² + 5) = 216x³ + 72x²y + 6xy² + 30x + 36x²y + 12xy² + y³ + 5y = 216x³ + 108x²y + 18xy² + 30x + y³ + 5y.
Такие члены, как 216x³, 108x²y, 18xy², 30x делятся на 6, поэтому осталось доказать, что y³ + 5y = y(y² + 5) делится на 6.
Для этого просто рассмотрим все 6 случаев:
y = 0: 0 mod 6 = 0;
y = 1: 1 + 5 mod 6 = 0;
y = 2: 8 + 5*2 mod 6 = 0;
y = 3: 27 + 15 = 42 mod 6 = 0;
y = 4: 64 + 20 = 84 mod 6 = 0;
y = 5: 125 + 25 mod 6 = 0.