Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
PΔ = 30 cм
a и b - катеты
По т. Пифагора (1-ое уравнение) и по формуле площади прямоугольного треугольника (2-ое уравнение) получаем систему:
{a² + b² = 13²
{1/2 (ab) = 30
{a² + b² = 169
{ab = 60
(a+b)²=a² + 2ab +b²= a² + b² + 2ab = 169 + 2*60 = 169 + 120 = 289 = 17²
(a+b)² = 17²
1) a + b = 17
2) a + b = -17 - не подходит по смыслу задачи.
{a + b = 17
a = 17-b
(17-b)b = 60
17b - b²- 60 = 0
b²- 17b + 60 = 0
D = 289 - 240 = 49
b₁ = (17-7)/2 = 5 a₁ = 17 - 5 = 12
b₂ = (17+7)/2 = 12 a₂ = 17 - 12 = 5
PΔ = 12 + 5 + 13 = 30 (cм) - периметр.
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
PΔ = 30 cм
Объяснение:
a и b - катеты
По т. Пифагора (1-ое уравнение) и по формуле площади прямоугольного треугольника (2-ое уравнение) получаем систему:
{a² + b² = 13²
{1/2 (ab) = 30
{a² + b² = 169
{ab = 60
(a+b)²=a² + 2ab +b²= a² + b² + 2ab = 169 + 2*60 = 169 + 120 = 289 = 17²
(a+b)² = 17²
1) a + b = 17
2) a + b = -17 - не подходит по смыслу задачи.
{a + b = 17
{ab = 60
a = 17-b
(17-b)b = 60
17b - b²- 60 = 0
b²- 17b + 60 = 0
D = 289 - 240 = 49
b₁ = (17-7)/2 = 5 a₁ = 17 - 5 = 12
b₂ = (17+7)/2 = 12 a₂ = 17 - 12 = 5
PΔ = 12 + 5 + 13 = 30 (cм) - периметр.