Число 59 по условию это число равно: 5х+4=6у+5 5х-6у=5-4 5х-6у=1 5х=6у+1 5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6 Подбираем числа делящиеся на 5: 15=14+1, не подходит, т. к.14 не делится на 6 25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно. 30=29+1 - нет 35=34+1 - нет 40= 39+1- нет 45= 44+1 - нет 50= 49+1 - нет 55=54+1 - да. Тогда задуманное число 55+4=59. 59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
по условию это число равно:
5х+4=6у+5
5х-6у=5-4
5х-6у=1
5х=6у+1
5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6
Подбираем числа делящиеся на 5:
15=14+1, не подходит, т. к.14 не делится на 6
25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно.
30=29+1 - нет
35=34+1 - нет
40= 39+1- нет
45= 44+1 - нет
50= 49+1 - нет
55=54+1 - да.
Тогда задуманное число 55+4=59.
59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b