В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
endd1
endd1
23.05.2023 09:39 •  Алгебра

Напишите квадратное неравенство, решение которого соответствует данному условию:

a) -2≤ x ≤4

b) x < 1 или х > 10

f) x € R

e) x < =3 - √5 или x ≥ - 3 + √5

Показать ответ
Ответ:
viki157
viki157
07.09.2021 19:57
1)
Область определения функции - все действительные числа, так как при а>0 под корнем находится положительное число, следовательно из него можно извлечь квадратный корень. График функции непрерывен на всей области определения. Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода.
2)

Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная
3)

При а>0 это уравнение не имеет решений, значит нулей у функции нет. Так как квадратный корень принимает только неотрицательные значения, то функция на всей области определения положительна.
4)

Производная равна нулю только в точке х=0 - это точка минимума, так как производная меняет свой знак с "-" на "+". Следовательно, при х<0, то есть при отрицательной производной, функция убывает, при х>0 - возрастает, так как производная больше нуля. Минимум функции находим как значение самой функции в точке минимума:

5)

Вторая производная при любых а>0 и х положительна, значит функция на всей области определения вогнута и у нее нет точек перегиба.

1)

Функция не является непрерывной, так как она не она не определена при . Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода.
2)

Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная
3)
Нули функции:

Так как квадратный корень принимает только неотрицательные значения, то функция в остальных точках области определения, то есть при положительна.
4)

Производная равна нулю только в точке х=0, однако эта точка попадает в область определения функции только при а=0. В общем случае, при , то есть при отрицательной производной, функция убывает, при - возрастает, так как производная больше нуля. Точки минимума совпадают с нулями функции и соответственно сами минимумы равны нулю.
5)

Вторая производная при любых а>0 и х отрицательна, значит функция на всей области определения выпукла (в знаменателе стоит выражение, которое в соответствии с областью определения не может быть отрицательным числом), точек перегиба у функции нет.
0,0(0 оценок)
Ответ:
АнтонХабаров
АнтонХабаров
07.09.2021 19:57
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в 4*x^3-12*x. 
Результат: y=0. Точка: (0, 0)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:4*x^3-12*x = 0 Решаем это уравнение  и его корни будут точками пересечения с X:
x=0. Точка: (0, 0)x=-1.73205080756888. Точка: (-1.73205080756888, 0)x=1.73205080756888. Точка: (1.73205080756888, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=12*x^2 - 12=0
Решаем это уравнение и его корни будут экстремумами:x=-1.00000000000000. Точка: (-1.00000000000000, 8.00000000000000)x=1.00000000000000. Точка: (1.00000000000000, -8.00000000000000)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:1.00000000000000Максимумы функции в точках:-1.00000000000000Возрастает на промежутках: (-oo, -1.0] U [1.0, oo)Убывает на промежутках: [-1.0, 1.0]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=24*x=0
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, 0)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота