2) y=ax^2+bx+c
D(y) - область определения
E(y) - область значения
1) D(y)=(-oo;+oo)
E(y)=[0;+oo)
2) D(y)=(-oo;+oo)
y_в=(-b^2+4ac)/4a
Если a>0, то E(y)=[(-b^2+4ac)/4a; +oo)
Если a<0, то E(y)=(-oo; (-b^2+4ac)/4a]
Если a=0, то E(y)=(-oo;+oo)
3) D(y)=(-oo;0) U (0;+oo)
E(y)=(-oo;0) U (0;+oo)
4) D(y)=(-oo;+oo)
E(y)=(-oo;+oo)
5) D(y)=[0;+oo)
6) D(y)=(-oo;+oo)
7) D(y)=(-oo;+oo)
2) y=ax^2+bx+c
Область определения Множество значений при a>0 Множество значений при a<0 Нули функции Положительные (отрицательные) значения Везде, кроме точки ВездеD(y) - область определения
E(y) - область значения
1) D(y)=(-oo;+oo)
E(y)=[0;+oo)
2) D(y)=(-oo;+oo)
y_в=(-b^2+4ac)/4a
Если a>0, то E(y)=[(-b^2+4ac)/4a; +oo)
Если a<0, то E(y)=(-oo; (-b^2+4ac)/4a]
Если a=0, то E(y)=(-oo;+oo)
3) D(y)=(-oo;0) U (0;+oo)
E(y)=(-oo;0) U (0;+oo)
4) D(y)=(-oo;+oo)
E(y)=(-oo;+oo)
5) D(y)=[0;+oo)
E(y)=[0;+oo)
6) D(y)=(-oo;+oo)
E(y)=[0;+oo)
7) D(y)=(-oo;+oo)
E(y)=(-oo;+oo)